Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 858(Pt 1): 159664, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36306832

ABSTRACT

The rewetting of degraded peatlands has been adopted as a method to address climate change. Concerns have been raised about the effects of peat inundation and drying cycles, in more extreme climate events, on the potential release of nitrogen (N) species, in particular ammonium (NH4-N), once rewetted, as well as the physico-chemical and biological properties of the peat. This study used intact peat cores to measure the impact of two different cycles of peat inundation and drying (1 month and 2 month) over a total study duration of 56 weeks on the (1) NH4-N, nitrate-N (NO3-N) and dissolved reactive phosphorus (DRP) in the soil pore water; (2) microbial community structure; (3) physico-chemical properties of the peat; and (4) the structure of the peat, and therefore its ability to mitigate flood risks and storm surges. The study found that rewetted cores released NO3-N in the pore water up to a concentration of 6.25 mg L-1, but had no appreciable impact on NH4-N, which remained below 1.7 mg L-1 over the study duration. DRP moved quickly though the upper layers of the cores, but physico-chemical analysis suggested it was adsorbed to more iron-rich soil, which was present at depths below 0.4 m in the cores. Time intervals between inundation produced no significant difference on the forms of inorganic N released, nor did it compact the soil or change the microbial community structure. The depth of the water table, however, had a significant impact on inorganic N release, particularly NO3-N, which indicates that this N species, and not NH4-N, may be problematic in rewetted peatlands.


Subject(s)
Nitrogen , Soil , Soil/chemistry , Nitrogen/analysis , Phosphorus/analysis , Nitrates/analysis , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...