Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Chem ; 6(1): 225, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37853226

ABSTRACT

On-surface mass transport is the key process determining the kinetics and dynamics of on-surface reactions, including the formation of nanostructures, catalysis, or surface cleaning. Volatile organic compounds (VOC) localized on a majority of surfaces dramatically change their properties and act as reactants in many surface reactions. However, the fundamental question "How far and how fast can the molecules travel on the surface to react?" remains open. Here we show that isoprene, the natural VOC, can travel ~1 µm s-1, i.e., centimeters per day, quickly filling low-concentration areas if they become locally depleted. We show that VOC have high surface adhesion on ceramic surfaces and simultaneously high mobility providing a steady flow of resource material for focused electron beam synthesis, which is applicable also on rough or porous surfaces. Our work established the mass transport of reactants on solid surfaces and explored a route for nanofabrication using the natural VOC layer.

2.
Nanomaterials (Basel) ; 10(10)2020 Oct 09.
Article in English | MEDLINE | ID: mdl-33050330

ABSTRACT

BiFeO3 (BFO) films on highly oriented pyrolytic graphite (HOPG) substrate were obtained by the atomic layer deposition (ALD) method. The oxidation of HOPG leads to the formation of bubble regions creating defective regions with active centers. Chemisorption occurs at these active sites in ALD. Additionally, carbon interacts with ozone and releases carbon oxides (CO, CO2). Further annealing during the in situ XPS process up to a temperature of 923 K showed a redox reaction and the formation of oxygen vacancies (Vo) in the BFO crystal lattice. Bubble delamination creates flakes of BiFeO3-x/rGO heterostructures. Magnetic measurements (M-H) showed ferromagnetism (FM) at room temperature Ms ~ 120 emu/cm3. The contribution to magnetization is influenced by the factor of charge redistribution on Vo causing the distortion of the lattice as well as by the superstructure formed at the boundary of two phases, which causes strong hybridization due to the superexchange interaction of the BFO film with the FM sublattice of the interface region. The development of a method for obtaining multiferroic structures with high FM values (at room temperature) is promising for magnetically controlled applications.

3.
Materials (Basel) ; 13(10)2020 May 23.
Article in English | MEDLINE | ID: mdl-32456133

ABSTRACT

The objective of this work is to study the delamination of bismuth ferrite prepared by atomic layer deposition on highly oriented pyrolytic graphite (HOPG) substrate. The samples' structures and compositions are provided by XPS, secondary ion mass spectrometry (SIMS) and Raman spectroscopy. The resulting films demonstrate buckling and delamination from the substrates. The composition inside the resulting bubbles is in a gaseous state. It contains the reaction products captured on the surface during the deposition of the film. The topography of Bi-Fe-O thin films was studied in vacuum and under atmospheric conditions using simultaneous SEM and atomic force microscopy (AFM). Besides complementary advanced imaging, a correlative SEM-AFM analysis provides the possibility of testing the mechanical properties by using a variation of pressure. In this work, the possibility of studying the surface tension of the thin films using a joint SEM-AFM analysis is shown.

SELECTION OF CITATIONS
SEARCH DETAIL
...