Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Inorg Biochem ; 253: 112500, 2024 04.
Article in English | MEDLINE | ID: mdl-38301386

ABSTRACT

Metallopeptidases are a group of metal-dependent enzymes that hydrolyze peptide bonds. These enzymes found in Streptococcus pneumoniae assist the pathogen in infecting the host by breaking down host tissues and extracellular matrix proteins. Considering metallopeptidases' significant role in bacterial virulence, inhibiting this enzyme represents a promising avenue for research. These enzymes are characterized by the presence of Zn(II) in the active site, proper coordination of which is essential for their catalytic function. This work aims to determine the significance of the specific amino acids in the metal binding domain of metallopeptidase from S. pneumoniae. For this purpose, we investigated the coordination chemistry of Zn(II), Ni(II), and Cu(II) ions with point-mutated peptide models of the metal-binding domain. Mutations were introduced at His-2 (L1) and Glu-1. Studies have shown that at pH 7.14 (pH of infected lungs by S. pneumoniae), point mutation on glutamic acid caused only minor effects on the binding of Zn(II) and Ni(II), while significantly improving Cu(II) binding. The stability of copper complexes is greater with the mutant Glu-1 â†’ Gln-1 than with the original domain due to a hydrogen bonding network created by the Gln backbone with its side chain. Substituting histidine resulted in a significant reduction in metal binding for all metal ions, highlighting the crucial role of His-2 in metal coordination. Introduced mutations at neutral pH did not significantly affect the secondary structure of metal complexes. However, at alkaline pH, the peptides showed a higher percentage of antiparallel ß-sheet structures upon the addition of Cu(II), Ni(II) and Zn(II).


Subject(s)
Copper , Zinc , Copper/chemistry , Catalytic Domain , Zinc/chemistry , Amino Acids , Metals , Peptides/metabolism , Metalloproteases , Chelating Agents , Ions
2.
Inorg Chem ; 62(45): 18425-18439, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37909295

ABSTRACT

The rapid spread of antibiotic-resistant bacteria continuously raises concerns about the future ineffectiveness of current antimicrobial treatments against infectious diseases. To address this problem, new therapeutic strategies and antimicrobial drugs with unique modes of action are urgently needed. Inhibition of metalloproteases, bacterial virulence factors, is a promising target for the development of antibacterial treatments. In this study, the interaction among Zn(II), Cu(II), and the metal-binding domains of two metalloproteases, AprA (Pseudomonas aureginosa) and CpaA (Acinetobacter baumanii), was investigated. The objective was to determine the coordination sphere of Zn(II) with a peptide model of two zinc-dependent metalloproteases. Additionally, the study explored the formation of Cu(II) complexes with the domains, as Cu(II) has been shown to inhibit metalloproteases. The third aim was to understand the role of nonbinding amino acids in stabilizing the metal complexes formed by these proteases. This work identified specific coordination patterns (HExxHxxxxxH) for both Zn(II) and Cu(II) complexes, with AprA and CpaA exhibiting a higher affinity for Cu(II) compared to Zn(II). The study also found that the CpaA domain has greater stability for both Zn(II) and Cu(II) complexes compared to AprA. The nonbinding amino acids of CpaA surrounding the metal ion contribute to the increased thermodynamic stability of the metal-peptide complex through various intramolecular interactions. These interactions can also influence the secondary structures of the peptides. The presence of certain amino acids, such as tyrosine, arginine, and glutamic acid, and their interactions contribute to the stability and, only in the case of Cu(II) complexes, the formation of a rare protein structure called a left-handed polyproline II helix (PPII), which is known to play a role in the stability and function of various proteins. These findings provide valuable insights into the coordination chemistry of bacterial metalloproteases and expand our understanding of potential mechanisms for inhibiting these enzymes.


Subject(s)
Anti-Infective Agents , Coordination Complexes , Copper/chemistry , Zinc/chemistry , Catalytic Domain , Peptides , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Amino Acids , Amines , Bacteria/metabolism , Metalloproteases/metabolism
3.
Dalton Trans ; 51(39): 14882-14893, 2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36056680

ABSTRACT

Streptococcus pneumoniae is the most frequent cause of fatal bacterial pneumonia infection worldwide. Due to the spreading of antibiotic-resistant pathogens, it is important to search for new therapeutic and prevention strategies against bacterial infections. It is believed that the search for effective inhibitors of bacterial and pathogenic metallopeptidases could be one of the innovative strategies for the design of new antibiotics. Most of them contain zinc in the metal-binding site of the protein, which is a critical component for the biological activity of the enzyme. The main goal of this work is to determine the specificity of the interactions between the binding domain of the metallopeptidase from S. pneumoniae, and Zn(II). Considering the observed inhibitory role of copper towards the metallopeptidases, the next step is to analyze the formation of complexes with Cu(II) and Ni(II). The thermodynamic properties of Zn(II), Cu(II), and Ni(II) complexes were examined by potentiometry, NMR, MS, UV-Vis, CD, and EPR. The results show a similar coordination pattern, HExxHxxxxxH, for all three studied metals below pH 7. Moreover, the primary binding sites were established as the N-terminus in all cases. However, at a pH value of 7.4, the coordination and geometry of the formed complexes differ. The comparison of the stability of the formed complexes reveals that both Cu(II) and Ni(II) are able to displace Zn(II) from its binding site in the whole studied pH range. It opens a discussion on the catalytic zinc ion displacement possibilities by other divalent metal ions and the importance of this process in enzymatic inhibition.


Subject(s)
Copper , Metals , Anti-Bacterial Agents , Copper/chemistry , Copper/pharmacology , Metalloproteases , Zinc/chemistry
4.
Inorg Chem ; 61(36): 14333-14343, 2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36044397

ABSTRACT

Infections caused by Candida species are becoming seriously dangerous and difficult to cure due to their sophisticated mechanisms of resistance. The host organism defends itself from the invader, e.g., by increasing the concentration of metal ions. Therefore, there is a need to understand the overall mechanisms of metal homeostasis in Candida species. One of them is associated with AMT1, an important virulence factor derived from Candida glabrata, and another with MAC1, present in Candida albicans. Both of the proteins possess a homologous Cys/His-rich domain. In our studies, we have chosen two model peptides, L680 (Ac-10ACMECVRGHRSSSCKHHE27-NH2, MAC1, Candida albicans) and L681 (Ac-10ACDSCIKSHKAAQCEHNDR28-NH2, AMT1, Candida glabrata), to analyze and compare the properties of their complexes with Zn(II) and Cd(II). We studied the stoichiometry, thermodynamic stability, and spectroscopic parameters of the complexes in a wide pH range. When competing for the metal ion in the equimolar mixture of two ligands and Cd(II)/Zn(II), L680 forms more stable complexes with Cd(II) while L681 forms more stable complexes with Zn(II) in a wide pH range. Interestingly, a Glu residue was responsible for the additional stability of Cd(II)-L680. Despite a number of scientific reports suggesting Cd(II) as an efficient surrogate of Zn(II), we showed significant differences between the Zn(II) and Cd(II) complexes of the studied peptides.


Subject(s)
Cadmium , Copper , Amino Acid Sequence , Candida albicans , Copper/chemistry , Peptides , Zinc/chemistry
5.
Inorg Chem ; 61(25): 9454-9468, 2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35696675

ABSTRACT

The increasing number of antibiotic-resistant pathogens has become one of the foremost health problems of modern times. One of the most lethal and multidrug-resistant bacteria is Mycobacterium tuberculosis (Mtb), which causes tuberculosis (TB). TB continues to engulf health systems due to the significant development of bacterial multidrug-resistant strains. Mammalian immune system response to mycobacterial infection includes, but is not limited to, increasing the concentration of zinc(II) and other divalent metal ions in phagosome vesicles up to toxic levels. Metal ions are necessary for the survival and virulence of bacteria but can be highly toxic to organisms if their concentrations are not strictly controlled. Therefore, understanding the mechanisms of how bacteria use metal ions to maintain their optimum concentrations and survive under lethal environmental conditions is essential. The mycobacterial SmtB protein, one of the metal-dependent transcription regulators of the ArsR/SmtB family, dissociates from DNA in the presence of high concentrations of metals, activating the expression of metal efflux proteins. In this work, we explore the properties of α5 metal-binding domains of SmtB/BigR4 proteins (the latter being the SmtB homolog from nonpathogenic Mycobacterium smegmatis), and two mutants of BigR4 as ligands for nickel(II) ions. The study focuses on the specificity of metal-ligand interactions and describes the effect of mutations on the coordination properties of the studied systems. The results of this research reveal that the Ni(II)-BigR4 α5 species are more stable than the Ni(II)-SmtB α5 complexes. His mutations, exchanging one of the histidines for alanine, cause a decrease in the stability of Ni(II) complexes. Surprisingly, the lack of His102 resulted also in increased involvement of acidic amino acids in the coordination. The results of this study may help to understand the role of critical mycobacterial virulence factor─SmtB in metal homeostasis. Although SmtB prefers Zn(II) binding, it may also bind metal ions that prefer other coordination modes, for example, Ni(II). We characterized the properties of such complexes in order to understand the nature of mycobacterial SmtB when acting as a ligand for metal ions, given that nickel and zinc ArsR family proteins possess analogous metal-binding motifs. This may provide an introduction to the design of a new antimicrobial strategy against the pathogenic bacterium M. tuberculosis.


Subject(s)
Mycobacterium tuberculosis , Zinc , Amino Acid Sequence , Bacterial Proteins/chemistry , DNA-Binding Proteins/chemistry , Ions , Ligands , Metals/metabolism , Mycobacterium tuberculosis/metabolism , Nickel/metabolism , Repressor Proteins/metabolism , Zinc/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...