Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 64(10): 6569-6580, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33719426

ABSTRACT

KRAS, the most common oncogenic driver in human cancers, is controlled and signals primarily through protein-protein interactions (PPIs). The interaction between KRAS and SOS1, crucial for the activation of KRAS, is a typical, challenging PPI with a large contact surface area and high affinity. Here, we report that the addition of only one atom placed between Y884SOS1 and A73KRAS is sufficient to convert SOS1 activators into SOS1 inhibitors. We also disclose the discovery of BI-3406. Combination with the upstream EGFR inhibitor afatinib shows in vivo efficacy against KRASG13D mutant colorectal tumor cells, demonstrating the utility of BI-3406 to probe SOS1 biology. These findings challenge the dogma that large molecules are required to disrupt challenging PPIs. Instead, a "foot in the door" approach, whereby single atoms or small functional groups placed between key PPI interactions, can lead to potent inhibitors even for challenging PPIs such as SOS1-KRAS.


Subject(s)
Proto-Oncogene Proteins p21(ras)/metabolism , SOS1 Protein/metabolism , Afatinib/chemistry , Afatinib/metabolism , Afatinib/therapeutic use , Allosteric Regulation/drug effects , Binding Sites , Catalytic Domain , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Humans , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Protein Interaction Maps/drug effects , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Quinazolines/chemistry , Quinazolines/metabolism , Quinazolines/pharmacology , Quinazolines/therapeutic use , SOS1 Protein/agonists , SOS1 Protein/antagonists & inhibitors , SOS1 Protein/genetics
2.
Cancer Discov ; 11(1): 142-157, 2021 01.
Article in English | MEDLINE | ID: mdl-32816843

ABSTRACT

KRAS is the most frequently mutated driver of pancreatic, colorectal, and non-small cell lung cancers. Direct KRAS blockade has proved challenging, and inhibition of a key downstream effector pathway, the RAF-MEK-ERK cascade, has shown limited success because of activation of feedback networks that keep the pathway in check. We hypothesized that inhibiting SOS1, a KRAS activator and important feedback node, represents an effective approach to treat KRAS-driven cancers. We report the discovery of a highly potent, selective, and orally bioavailable small-molecule SOS1 inhibitor, BI-3406, that binds to the catalytic domain of SOS1, thereby preventing the interaction with KRAS. BI-3406 reduces formation of GTP-loaded RAS and limits cellular proliferation of a broad range of KRAS-driven cancers. Importantly, BI-3406 attenuates feedback reactivation induced by MEK inhibitors and thereby enhances sensitivity of KRAS-dependent cancers to MEK inhibition. Combined SOS1 and MEK inhibition represents a novel and effective therapeutic concept to address KRAS-driven tumors. SIGNIFICANCE: To date, there are no effective targeted pan-KRAS therapies. In-depth characterization of BI-3406 activity and identification of MEK inhibitors as effective combination partners provide an attractive therapeutic concept for the majority of KRAS-mutant cancers, including those fueled by the most prevalent mutant KRAS oncoproteins, G12D, G12V, G12C, and G13D.See related commentary by Zhao et al., p. 17.This article is highlighted in the In This Issue feature, p. 1.


Subject(s)
Lung Neoplasms , Proto-Oncogene Proteins p21(ras) , Cell Line, Tumor , Humans , Mitogen-Activated Protein Kinase Kinases , Mutation , Nucleotides , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins p21(ras)/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...