Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nuklearmedizin ; 61(3): 247-261, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35668669

ABSTRACT

Addressing molecular targets, that are overexpressed by various tumor entities, using radiolabeled molecules for a combined diagnostic and therapeutic (theranostic) approach is of increasing interest in oncology. The gastrin-releasing peptide receptor (GRPr), which is part of the bombesin family, has shown to be overexpressed in a variety of tumors, therefore, serving as a promising target for those theranostic applications. A large amount of differently radiolabeled bombesin derivatives addressing the GRPr have been evaluated in the preclinical as well as clinical setting showing fast blood clearance and urinary excretion with selective GRPr-binding. Most of the available studies on GRPr-targeted imaging and therapy have evaluated the theranostic approach in prostate and breast cancer applying bombesin derivatives tagged with the predominantly used theranostic pair of 68Ga/177Lu which is the focus of this review.


Subject(s)
Prostatic Neoplasms , Receptors, Bombesin , Bombesin/therapeutic use , Cell Line, Tumor , Humans , Male , Positron-Emission Tomography/methods , Precision Medicine , Prostatic Neoplasms/pathology , Radiopharmaceuticals/therapeutic use
2.
PLoS Negl Trop Dis ; 16(1): e0009845, 2022 01.
Article in English | MEDLINE | ID: mdl-35041652

ABSTRACT

A plethora of bat-associated lyssaviruses potentially capable of causing the fatal disease rabies are known today. Transmitted via infectious saliva, occasionally-reported spillover infections from bats to other mammals demonstrate the permeability of the species-barrier and highlight the zoonotic potential of bat-related lyssaviruses. However, it is still unknown whether and, if so, to what extent, viruses from different lyssavirus species vary in their pathogenic potential. In order to characterize and systematically compare a broader group of lyssavirus isolates for their viral replication kinetics, pathogenicity, and virus release through saliva-associated virus shedding, we used a mouse infection model comprising a low (102 TCID50) and a high (105 TCID50) inoculation dose as well as three different inoculation routes (intramuscular, intranasal, intracranial). Clinical signs, incubation periods, and survival were investigated. Based on the latter two parameters, a novel pathogenicity matrix was introduced to classify lyssavirus isolates. Using a total of 13 isolates from ten different virus species, this pathogenicity index varied within and between virus species. Interestingly, Irkut virus (IRKV) and Bokeloh bat lyssavirus (BBLV) obtained higher pathogenicity scores (1.14 for IRKV and 1.06 for BBLV) compared to rabies virus (RABV) isolates ranging between 0.19 and 0.85. Also, clinical signs differed significantly between RABV and other bat lyssaviruses. Altogether, our findings suggest a high diversity among lyssavirus isolates concerning survival, incubation period, and clinical signs. Virus shedding significantly differed between RABVs and other lyssaviruses. Our results demonstrated that active shedding of infectious virus was exclusively associated with two RABV isolates (92% for RABV-DogA and 67% for RABV-Insectbat), thus providing a potential explanation as to why sustained spillovers are solely attributed to RABVs. Interestingly, 3D imaging of a selected panel of brain samples from bat-associated lyssaviruses demonstrated a significantly increased percentage of infected astrocytes in mice inoculated with IRKV (10.03%; SD±7.39) compared to RABV-Vampbat (2.23%; SD±2.4), and BBLV (0.78%; SD±1.51), while only individual infected cells were identified in mice infected with Duvenhage virus (DUVV). These results corroborate previous studies on RABV that suggest a role of astrocyte infection in the pathogenicity of lyssaviruses.


Subject(s)
Chiroptera/virology , Lyssavirus/genetics , Lyssavirus/pathogenicity , Rhabdoviridae Infections/virology , Animals , Astrocytes/virology , Genome, Viral , Mice , Mice, Inbred BALB C , RNA, Viral , Random Allocation , Rhabdoviridae Infections/pathology , Virus Cultivation , Virus Replication , Virus Shedding
3.
Viruses ; 13(10)2021 10 03.
Article in English | MEDLINE | ID: mdl-34696419

ABSTRACT

Molecular details of field rabies virus (RABV) adaptation to cell culture replication are insufficiently understood. A better understanding of adaptation may not only reveal requirements for efficient RABV replication in cell lines, but may also provide novel insights into RABV biology and adaptation-related loss of virulence and pathogenicity. Using two recombinant field rabies virus clones (rRABV Dog and rRABV Fox), we performed virus passages in three different cell lines to identify cell culture adaptive mutations. Ten passages were sufficient for the acquisition of adaptive mutations in the glycoprotein G and in the C-terminus of phosphoprotein P. Apart from the insertion of a glycosylation sequon via the mutation D247N in either virus, both acquired additional and cell line-specific mutations after passages on BHK (K425N) and MDCK-II (R346S or R350G) cells. As determined by virus replication kinetics, complementation, and immunofluorescence analysis, the major bottleneck in cell culture replication was the intracellular accumulation of field virus G protein, which was overcome after the acquisition of the adaptive mutations. Our data indicate that limited release of extracellular infectious virus at the plasma membrane is a defined characteristic of highly virulent field rabies viruses and we hypothesize that the observed suboptimal release of infectious virions is due to the inverse correlation of virus release and virulence in vivo.


Subject(s)
Antigens, Viral/genetics , Rabies virus/genetics , Viral Envelope Proteins/genetics , Virus Release/genetics , Animals , Antibodies, Viral/blood , Antigens, Viral/metabolism , Cell Culture Techniques , Cell Line , Dogs , Glycoproteins/genetics , Glycosylation , Point Mutation/genetics , Rabies/virology , Viral Envelope Proteins/metabolism , Viral Proteins/genetics , Virion/metabolism , Virulence/genetics , Virus Replication/genetics
4.
Viruses ; 13(1)2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33419096

ABSTRACT

There is a growing diversity of bat-associated lyssaviruses in the Old World. In August 2017, a dead Brandt's bat (Myotis brandtii) tested positive for rabies and based on partial sequence analysis, the novel Kotalahti bat lyssavirus (KBLV) was identified. Because the bat was in an autolyzed state, isolation of KBLV was neither successful after three consecutive cell passages on cells nor in mice. Next generation sequencing (NGS) was applied using Ion Torrent ™ S5 technology coupled with target enrichment via hybridization-based capture (myBaits®) was used to sequence 99% of the genome, comprising of 11,878 nucleotides (nt). KBLV is most closely related to EBLV-2 (78.7% identity), followed by KHUV (79.0%) and BBLV (77.6%), supporting the assignment as phylogroup I lyssavirus. Interestingly, all of these lyssaviruses were also isolated from bat species of the genus Myotis, thus supporting that M. brandtii is likely the reservoir host. All information on antigenic and genetic divergence fulfil the species demarcation criteria by ICTV, so that we recommend KBLV as a novel species within the Lyssavirus genus. Next to sequence analyses, assignment to phylogroup I was functionally corroborated by cross-neutralization of G-deleted RABV, pseudotyped with KBLV-G by sera from RABV vaccinated humans. This suggests that conventional RABV vaccines also confer protection against the novel KBLV.


Subject(s)
Lyssavirus/genetics , Lyssavirus/immunology , Rabies Vaccines/immunology , Rabies/prevention & control , Rhabdoviridae Infections/prevention & control , Animals , Chiroptera/virology , Female , Genome, Viral , Lyssavirus/isolation & purification , Mice , Mice, Inbred BALB C , Rabies/veterinary , Rhabdoviridae Infections/veterinary , Vaccination
5.
Vaccines (Basel) ; 9(1)2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33466701

ABSTRACT

The live genetically-engineered oral rabies virus (RABV) variant SPBN GASGAS induces long-lasting immunity in foxes and protection against challenge with an otherwise lethal dose of RABV field strains both after experimental oral and parenteral routes of administration. Induction of RABV-specific binding antibodies and immunoglobulin isotypes (IgM, total IgG, IgG1, IgG2) were comparable in orally and parenterally vaccinated foxes. Differences were only observed in the induction of virus-neutralizing (VNA) titers, which were significantly higher in the parenterally vaccinated group. The dynamics of rabies-specific antibodies pre- and post-challenge (365 days post vaccination) suggest the predominance of type-1 immunity protection of SPBN GASGAS. Independent of the route of administration, in the absence of IgG1 the immune response to SPBN GAGAS was mainly IgG2 driven. Interestingly, vaccination with SPBN GASGAS does not cause significant differences in inducible IFN-γ production in vaccinated animals, indicating a relatively weak cellular immune response during challenge. Notably, the parenteral application of SPBN GASGAS did not induce any adverse side effects in foxes, thus supporting safety studies of this oral rabies vaccine in various species.

6.
Acta Neuropathol Commun ; 8(1): 199, 2020 11 23.
Article in English | MEDLINE | ID: mdl-33228789

ABSTRACT

The highly neurotropic rabies virus (RABV) enters peripheral neurons at axon termini and requires long distance axonal transport and trans-synaptic spread between neurons for the infection of the central nervous system (CNS). Recent 3D imaging of field RABV-infected brains revealed a remarkably high proportion of infected astroglia, indicating that highly virulent field viruses are able to suppress astrocyte-mediated innate immune responses and virus elimination pathways. While fundamental for CNS invasion, in vivo field RABV spread and tropism in peripheral tissues is understudied. Here, we used three-dimensional light sheet and confocal laser scanning microscopy to investigate the in vivo distribution patterns of a field RABV clone in cleared high-volume tissue samples after infection via a natural (intramuscular; hind leg) and an artificial (intracranial) inoculation route. Immunostaining of virus and host markers provided a comprehensive overview of RABV infection in the CNS and peripheral nerves after centripetal and centrifugal virus spread. Importantly, we identified non-neuronal, axon-ensheathing neuroglia (Schwann cells, SCs) in peripheral nerves of the hind leg and facial regions as a target cell population of field RABV. This suggests that virus release from axons and infected SCs is part of the RABV in vivo cycle and may affect RABV-related demyelination of peripheral neurons and local innate immune responses. Detection of RABV in axon-surrounding myelinating SCs after i.c. infection further provided evidence for anterograde spread of RABV, highlighting that RABV axonal transport and spread of infectious virus in peripheral nerves is not exclusively retrograde. Our data support a new model in which, comparable to CNS neuroglia, SC infection in peripheral nerves suppresses glia-mediated innate immunity and delays antiviral host responses required for successful transport from the peripheral infection sites to the brain.


Subject(s)
Axonal Transport , Brain/virology , Immunity, Innate/immunology , Neuroglia/virology , Neurons/virology , Peripheral Nerves/virology , Rabies virus/pathogenicity , Viral Tropism , Animals , Axons/metabolism , Axons/pathology , Axons/virology , Brain/immunology , Brain/pathology , Imaging, Three-Dimensional , Mice , Microscopy, Confocal , Neuroglia/immunology , Neuroglia/pathology , Neurons/metabolism , Neurons/pathology , Peripheral Nerves/immunology , Peripheral Nerves/pathology , RNA, Viral , Rabies , Schwann Cells/immunology , Schwann Cells/pathology , Schwann Cells/virology
7.
Viruses ; 12(9)2020 08 20.
Article in English | MEDLINE | ID: mdl-32825306

ABSTRACT

The rabies virus strain Komatsugawa (Koma), which was isolated from a dog in Tokyo in the 1940s before eradication of rabies in Japan in 1957, is known as the only existent Japanese field strain (street strain). Although this strain potentially provides a useful model to study rabies pathogenesis, little is known about its genetic and phenotypic properties. Notably, this strain underwent serial passages in rodents after isolation, indicating the possibility that it may have lost biological characteristics as a street strain. In this study, to evaluate the utility of the Koma strain for studying rabies pathogenesis, we examined the genetic properties and in vitro and in vivo phenotypes. Genome-wide genetic analyses showed that, consistent with previous findings from partial sequence analyses, the Koma strain is closely related to a Russian street strain within the Arctic-related phylogenetic clade. Phenotypic examinations in vitro revealed that the Koma strain and the representative street strains are less neurotropic than the laboratory strains. Examination by using a mouse model demonstrated that the Koma strain and the street strains are more neuroinvasive than the laboratory strains. These findings indicate that the Koma strain retains phenotypes similar to those of street strains, and is therefore useful for studying rabies pathogenesis.


Subject(s)
Dog Diseases/virology , Rabies virus/genetics , Rabies/veterinary , Animals , Dogs , Genome, Viral , Male , Mice , Phenotype , Phylogeny , Rabies/virology , Rabies virus/classification , Rabies virus/isolation & purification , Tokyo , Viral Proteins/genetics
8.
Cells ; 9(2)2020 02 11.
Article in English | MEDLINE | ID: mdl-32053954

ABSTRACT

Although conventional immunohistochemistry for neurotropic rabies virus (RABV) usually shows high preference for neurons, non-neuronal cells are also potential targets, and abortive astrocyte infection is considered a main trigger of innate immunity in the CNS. While in vitro studies indicated differences between field and less virulent lab-adapted RABVs, a systematic, quantitative comparison of astrocyte tropism in vivo is lacking. Here, solvent-based tissue clearing was used to measure RABV cell tropism in infected brains. Immunofluorescence analysis of 1 mm-thick tissue slices enabled 3D-segmentation and quantification of astrocyte and neuron infection frequencies. Comparison of three highly virulent field virus clones from fox, dog, and raccoon with three lab-adapted strains revealed remarkable differences in the ability to infect astrocytes in vivo. While all viruses and infection routes led to neuron infection frequencies between 7-19%, striking differences appeared for astrocytes. Whereas astrocyte infection by field viruses was detected independent of the inoculation route (8-27%), only one lab-adapted strain infected astrocytes route-dependently [0% after intramuscular (i.m.) and 13% after intracerebral (i.c.) inoculation]. Two lab-adapted vaccine viruses lacked astrocyte infection altogether (0%, i.c. and i.m.). This suggests a model in which the ability to establish productive astrocyte infection in vivo functionally distinguishes field and attenuated lab RABV strains.


Subject(s)
Neurons/ultrastructure , Rabies virus/ultrastructure , Rabies/diagnosis , Viral Tropism , Animals , Astrocytes/ultrastructure , Astrocytes/virology , Brain/ultrastructure , Brain/virology , Dogs , Encephalitis/diagnosis , Encephalitis/pathology , Encephalitis/virology , Humans , Immunity, Innate/immunology , Neurons/virology , Rabies/pathology , Rabies/virology , Rabies virus/pathogenicity
9.
Viruses ; 11(9)2019 08 27.
Article in English | MEDLINE | ID: mdl-31461981

ABSTRACT

: To evaluate the long-term immunogenicity of the live-attenuated, oral rabies vaccine SPBN GASGAS in a full good clinical practice (GCP) compliant study, forty-six (46) healthy, seronegative red foxes (Vulpesvulpes) were allocated to two treatment groups: group 1 (n = 31) received a vaccine bait containing 1.7 ml of the vaccine of minimum potency (106.6 FFU/mL) and group 2 (n = 15) received a placebo-bait. In total, 29 animals of group 1 and 14 animals of group 2 were challenged at 12 months post-vaccination with a fox rabies virus isolate (103.0 MICLD50/mL). While 90% of the animals offered a vaccine bait resisted the challenge, only one animal (7%) of the controls survived. All animals that had seroconverted following vaccination survived the challenge infection at 12 months post-vaccination. Rabies specific antibodies could be detected as early as 14 days post-vaccination. Based on the kinetics of the antibody response to SPBN GASGAS as measured in ELISA and RFFIT, the animals maintained stable antibody titres during the 12-month pre-challenge observation period at a high level. The results indicate that successful vaccination using the oral route with this new rabies virus vaccine strain confers long-term duration of immunity beyond one year, meeting the same requirements as for licensure as laid down by the European Pharmacopoeia.


Subject(s)
Antibodies, Viral/blood , Rabies Vaccines/administration & dosage , Rabies virus/immunology , Rabies/veterinary , Administration, Oral , Animals , Foxes , Immunogenicity, Vaccine , Rabies/immunology , Rabies/prevention & control , Vaccination/veterinary , Vaccines, Attenuated/administration & dosage
10.
J Vis Exp ; (146)2019 04 30.
Article in English | MEDLINE | ID: mdl-31107452

ABSTRACT

The visualization of infection processes in tissues and organs by immunolabeling is a key method in modern infection biology. The ability to observe and study the distribution, tropism, and abundance of pathogens inside of organ tissues provides pivotal data on disease development and progression. Using conventional microscopy methods, immunolabeling is mostly restricted to thin sections obtained from paraffin-embedded or frozen samples. However, the limited 2D image plane of these thin sections may lead to the loss of crucial information on the complex structure of an infected organ and the cellular context of the infection. Modern multicolor, immunostaining-compatible tissue clearing techniques now provide a relatively fast and inexpensive way to study high-volume 3D image stacks of virus-infected organ tissue. By exposing the tissue to organic solvents, it becomes optically transparent. This matches the sample's refractive indices and eventually leads to a significant reduction of light scattering. Thus, in combination with long free working distance objectives, large tissue sections up to 1 mm in size can be imaged by conventional confocal laser scanning microscopy (CLSM) at high resolution. Here, we describe a protocol to apply deep-tissue imaging after tissue clearing to visualize rabies virus distribution in infected brains in order to study topics like virus pathogenesis, spread, tropism, and neuroinvasion.


Subject(s)
Brain/virology , Imaging, Three-Dimensional/methods , Rabies virus/ultrastructure , Rabies/pathology , Animals , Ferrets , Mice , Microscopy, Confocal/methods , Microtomy , Rabies/virology , Solvents
SELECTION OF CITATIONS
SEARCH DETAIL
...