Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Colloids Surf B Biointerfaces ; 204: 111787, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33962371

ABSTRACT

The neuroscience field has increased enormously over the last decades, achieving the possible real application of neuronal cultures not only for reproducing neural architectures resembling in vivo tissues, but also for the development of functional devices. In this context, surface patterning for cell confinement is crucial, and new active materials together with new protocols for preparing substrates suitable for confining cells, guiding their processes in the desired configuration are extremely appreciated. Here, TiO2 sol-gel derived films were selected as proof-of-concept materials to grow neurons in suitable confined configurations, taking advantage of the biocompatible properties of modified TiO2 substrates. TiO2 sol-gel derived films were made compatible with the growth of neurons thanks to a stable and controlled poly-lysine coating, obtained by silanization chemistry and streptavidin-biotin interactions. Moreover, a spotting protocol, here described and optimized, allowed the simple preparation of arrays of neurons, where cell adhesion was guided in specific areas and the neurites development driven in the desired arrangement. The resulting arrays were successfully tested for the growth and differentiation of neurons, demonstrating the possible adhesion of cells in specific areas of the film, therefore paving the way to applications such as the direct growth of excitable cells nearby electrodes of devices, with an evident enhancement of cell-electrodes communication.


Subject(s)
Titanium , Cell Adhesion
2.
Biophys Chem ; 253: 106212, 2019 10.
Article in English | MEDLINE | ID: mdl-31280069

ABSTRACT

Many efforts have been spent in the last decade for the development of nanoscale synaptic devices integrated into neuromorphic circuits, trying to emulate the behavior of natural synapses. The study of brain properties with the standard approaches based on biocompatible electrodes coupled to conventional electronics, however, presents strong limitations, which in turn could be overcame by the in-situ growth of neuronal networks coupled to memristive devices. To meet this challenging task, here two different chips were designed and fabricated for culturing neuronal cells and sensing their electrophysiological activity. The first chip was designed to be connected to an external memristor, while the second chip was coated with TiO2 films owning memristive properties. The biocompatibility of chips was preliminary analyzed by culturing the hybrid motor-neuron cell line NSC-34 and by measuring the electrical activity of cells interfacing the chip with a standard patch-clamp setup. Next, neurons were seeded on chips and their activity measured with the same setup. For both cell types total current and voltage responses were evoked and recorded with optimal results with no breakdowns. In addition, an external stimulation was applied to cells through chip electrodes, being effective and causing no damage or pitfalls to the cells. Finally, the whole bio-hybrid system, i.e. the chip interconnected with a commercial memristor, was tested with promising results. Spontaneous electrical activity of neurons grown on the chip was indeed present and this signal was collected and sent to the memristor, changing its state. Taken together, we demonstrated the ability of memristor to work with a synaptic/plastic response together with natural systems, opening the way for the further implementation of basic computing elements able to perform both storage and processing of data, as in natural neurons.


Subject(s)
Neural Networks, Computer , Neurons/cytology , Animals , Electrodes , Electronics , Mice , Neurons/metabolism , Synapses/metabolism , Tumor Cells, Cultured
3.
Colloids Surf B Biointerfaces ; 181: 166-173, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31132608

ABSTRACT

Amino-terminated surfaces can be effectively obtained by means of silanizing agents, realizing surfaces suitable for the purification of biomarkers of several pathologies. Since the level of biomarkers, such as microRNAs and cell-free DNA, into circulation may be extremely low, new and ameliorated capturing molecules and protocols are highly required. In this work, a new silane, acetone-imine propyl trimethoxysilane (AIPTMS), is synthesized with a simple and elegant reaction, via the nucleophilic addition of the primary amino group to the carbonyl group of acetone. AIPTMS and APTMS were used to silanize silicon oxide surfaces, which were characterized chemically (XPS) and morphologically (AFM). The two types of surfaces were chemically similar, but behaved very differently both for surface morphology and functional properties. The AIPTMS-modified surface was indeed very smooth and homogeneous with respect to the APTMS-modified surface. Moreover, the AIPTMS surface captured larger amounts of nucleic acids almost immediately after preparation, while APTMS-based functional surfaces needed longer time to reach comparable efficiency. AIPTMS shows several advantages over standard aminosilanes, as it realizes a more homogeneous surface coverage that, in turn, produces an improved response towards the capture of nucleic acids. AIPTMS is a very promising reagent for the reliable and reproducible preparation of active biofunctional surfaces for the purification and analysis of circulating biomarkers.


Subject(s)
Propylamines/chemistry , Silanes/chemistry , Silicon Dioxide/chemistry , Molecular Structure , Particle Size , Propylamines/chemical synthesis , Silanes/chemical synthesis , Surface Properties
4.
Talanta ; 193: 44-50, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30368296

ABSTRACT

Polydimethylsiloxane (PDMS) is a well-known biocompatible polymer employed for many applications in the biomedical field. In this study, the biocompatibility and versatility of PDMS was tested setting up a microdevice devoted to the purification and analysis of nucleic acids. The PDMS microdevice was demonstrated to successfully fulfill all requirements of genetic analyses such as genotyping and pathogen DNA identification both in multiplex and real-time PCR, suggesting the possibility to carry out a molecular test directly on-chip. Moreover, the PDMS microdevice was successfully applied to the purification and detection of disease biomarkers, such as microRNAs related to cancer or heart disease. On-chip microRNA purification was demonstrated starting from clinically relevant samples, i.e. plasma, serum, tissue biopsies. Significantly, the purification and the transcription of microRNA into cDNA occur in the same PDMS chamber, saving time and labor for the overall analysis. Again, the PDMS microdevice was confirmed as a notable candidate for compact, rapid, easy-to-use molecular tests.


Subject(s)
DNA/analysis , Dimethylpolysiloxanes/chemistry , Lab-On-A-Chip Devices , MicroRNAs/analysis , Biomarkers/analysis , Genotyping Techniques/instrumentation , Genotyping Techniques/methods , Humans , MicroRNAs/isolation & purification , Multiplex Polymerase Chain Reaction/instrumentation , Multiplex Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/instrumentation , Real-Time Polymerase Chain Reaction/methods , Staphylococcus aureus/genetics , Streptococcus pneumoniae/genetics
5.
J Mech Behav Biomed Mater ; 78: 381-394, 2018 02.
Article in English | MEDLINE | ID: mdl-29220822

ABSTRACT

Traditional implants made of bulk titanium are much stiffer than human bone and this mismatch can induce stress shielding. Although more complex to produce and with less predictable properties compared to bulk implants, implants with a highly porous structure can be produced to match the bone stiffness and at the same time favor bone ingrowth and regeneration. This paper presents the results of the mechanical and dimensional characterization of different regular cubic open-cell cellular structures produced by Selective Laser Melting (SLM) of Ti6Al4V alloy, all with the same nominal elastic modulus of 3GPa that matches that of human trabecular bone. The main objective of this research was to determine which structure has the best fatigue resistance through fully reversed fatigue tests on cellular specimens. The quality of the manufacturing process and the discrepancy between the actual measured cell parameters and the nominal CAD values were assessed through an extensive metrological analysis. The results of the metrological assessment allowed us to discuss the effect of manufacturing defects (porosity, surface roughness and geometrical inaccuracies) on the mechanical properties. Half of the specimens was subjected to a stress relief thermal treatment while the other half to Hot Isostatic Pressing (HIP), and we compared the effect of the treatments on porosity and on the mechanical properties. Fatigue strength seems to be highly dependent on the surface irregularities and notches introduced during the manufacturing process. In fully reversed fatigue tests, the high performances of stretching dominated structures compared to bending dominated structures are not found. In fact, with thicker struts, such structures proved to be more resistant, even if bending actions were present.


Subject(s)
Lasers , Materials Testing , Stress, Mechanical , Titanium , Alloys , Hardness , Models, Theoretical , Phase Transition , Prostheses and Implants
6.
Eur Biophys J ; 46(8): 803-811, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29043382

ABSTRACT

A new communication route among cells was reported in recent years, via extracellular vesicles and their cargo. Exosomes in particular are attracting increasing interest as privileged mediators of this cell communication route. The exosome-mediated transfer of nucleic acids, especially of microRNAs, is particularly promising for their use both as biomarkers of pathologies and as a therapeutic tool. Here, a simplified model of interaction among cells, microRNAs and vesicles is studied using a biophysical approach. A synthetic and fluorescent microRNA (i.e. miR-1246 conjugated with TAMRA) was selected to model cell communication, monitoring its internalization in cells. The fluorescent miR-1246, either naked or included in synthetic or natural vesicles, was incubated with human breast adenocarcinoma cells (MCF7) for different times. A comparison between this human microRNA and its DNA copy or an exogenous microRNA (from Caenorhabditis elegans) allowed assessment of the specificity of the information transfer through microRNAs, and especially associated with exosomes. The uptake of naked miR-1246 was indeed higher both in terms of number of targeted cells and intensity of fluorescence signal with respect to the other nucleic acids tested. The same occurred with miR-1246 loaded exosomes, evidencing a specific uptake only partially due to the lipidic components and present only when the human microRNA was loaded in exosomes, which were themselves derived from the same MCF7 cells.


Subject(s)
Exosomes/metabolism , MicroRNAs/metabolism , Biological Transport , Cell Communication , Humans , MCF-7 Cells
7.
Biophys Chem ; 229: 142-150, 2017 10.
Article in English | MEDLINE | ID: mdl-28465106

ABSTRACT

A reliable clinical assay based on circulating microRNAs (miRNAs) as biomarkers is highly required. Microdevices offer an attractive solution as a fast and inexpensive way of concentrating these biomarkers from a low sample volume. A previously developed polydimethylsiloxane (PDMS) microdevice able to purify and detect circulating miRNAs was here optimized. The optimization of the morphological and chemical surface properties by nanopatterning and functionalization is presented. Surfaces were firstly characterized by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), fluorescamine assay and s-SDTB (sulphosuccinimidyl-4-o-(4,4-dimethoxytrityl) butyrate) assay and subsequently tested for their capacity to adsorb a fluorescent miRNA. From our analysis, modification of surface charge with 0.1% APTMS ((3-Aminopropyl)trimethoxysilane) and 0.9% PEG-s (2-[Methoxy-(polyethyleneoxy)propyl]trimethoxysilane) performed at 60°C for 10min was identified as the best purification condition. Our optimized microdevice integrated with real-time PCR detection, was demonstrated to selectively purify both synthetic and natural circulating miRNAs with a sensitivity of 0.01pM.


Subject(s)
Biomarkers/blood , Dimethylpolysiloxanes/chemistry , MicroRNAs/isolation & purification , Microfluidic Analytical Techniques/methods , Fluorescent Dyes/chemistry , Humans , Isocyanates/chemistry , MicroRNAs/blood , MicroRNAs/chemistry , Microfluidic Analytical Techniques/instrumentation , Microscopy, Atomic Force , Photoelectron Spectroscopy , Real-Time Polymerase Chain Reaction , Silanes/chemistry , Surface Properties
8.
J Mech Behav Biomed Mater ; 71: 295-306, 2017 07.
Article in English | MEDLINE | ID: mdl-28376363

ABSTRACT

Fatigue resistance and biocompatibility are key parameters for the successful implantation of hard-tissue prostheses, which nowadays are more and more frequently manufactured by selective laser melting (SLM). For this purpose, the present paper is aimed at investigating the effect of post-sintering treatments on the fatigue behavior and biological properties of Ti samples produced by SLM. After the building process, all samples are heat treated to achieve a complete stress relief. The remaining ones are tribofinished with the aim of reducing the surface roughness of the as-sintered condition. Part of the tribofinished samples are then subjected to one of the following post-sintering treatments: (i) shot peening, (ii) hot isostatic pressing (HIP), and (iii) electropolishing. It is found that shot peening and HIP are the most effective treatments to improve the high and the very-high cycle fatigue resistance, respectively. At the same time, they preserve the good biocompatibility ensured by the biomedical Titanium Grade 23.


Subject(s)
Lasers , Prostheses and Implants , Titanium/analysis , Alloys , Hardness , Humans , Materials Testing , Surface Properties
9.
Colloids Surf B Biointerfaces ; 146: 746-53, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27449965

ABSTRACT

MicroRNAs (miRNAs) are endogenous, small (18-24nt), non-coding RNAs that regulate gene expression. Among miRNAs, those bound to the AGO2 protein are the functionally active fraction which mediates the cell regulatory processes and regulate messages exchanged by cells. Several methods have been developed to purify this fraction of microRNAs, such as immunoprecipitation and immunoprecipitation-derived techniques. However, all these techniques are generally recognized as technically complicated and time consuming. Here, a new bio-functional surface for the specific capture of AGO2-bound microRNAs is proposed. Starting from a silicon oxide surface, a protein A layer was covalently bound via epoxy chemistry to orient specific anti-AGO2 antibodies on the surface. The anti-AGO2 antibodies captured the AGO2 protein present in cell lysate and in human plasma. The AGO2-bound microRNAs were then released by enzymatic digestion and detected via RT-qPCR. Control surfaces were also prepared and tested. Every step in the preparation of the bio-functional surfaces was fully characterized from the chemical, morphological and functional point of view. The resulting bio-functional surface is able to specifically capture the AGO2-bound miRNAs from biologically-relevant samples, such as cell lysate and human plasma. These samples contain different proportions of AGO2-bound microRNAs, as reliably detected with the immunocapture method here proposed. This work opens new perspectives for a simple and faster method to isolate not only AGO2-bound microRNAs, but also the multiprotein complex containing AGO2 and miRNAs.


Subject(s)
Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/metabolism , Argonaute Proteins/metabolism , MicroRNAs/metabolism , Plasma/metabolism , Argonaute Proteins/genetics , Argonaute Proteins/immunology , Humans , Immunoprecipitation , MCF-7 Cells , MicroRNAs/genetics , Plasma/chemistry , Protein Binding , Silicon Dioxide/chemistry , Silicon Dioxide/metabolism , Staphylococcal Protein A/chemistry , Staphylococcal Protein A/metabolism , Surface Properties
10.
Talanta ; 150: 699-704, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26838461

ABSTRACT

The detection of low abundant biomarkers, such as circulating microRNAs, demands innovative detection methods with increased resolution, sensitivity and specificity. Here, a biofunctional surface was implemented for the selective capture of microRNAs, which were detected through fluorescence enhancement directly on a photonic crystal. To set up the optimal biofunctional surface, epoxy-coated commercially available microscope slides were spotted with specific anti-microRNA probes. The optimal concentration of probe as well as of passivating agent were selected and employed for titrating the microRNA hybridization. Cross-hybridization of different microRNAs was also tested, resulting negligible. Once optimized, the protocol was adapted to the photonic crystal surface, where fluorescent synthetic miR-16 was hybridized and imaged with a dedicated equipment. The photonic crystal consists of a dielectric multilayer patterned with a grating structure. In this way, it is possible to take advantage from both a resonant excitation of fluorophores and an angularly redirection of the emitted radiation. As a result, a significant fluorescence enhancement due to the resonant structure is collected from the patterned photonic crystal with respect to the outer non-structured surface. The dedicated read-out system is compact and based on a wide-field imaging detection, with little or no optical alignment issues, which makes this approach particularly interesting for further development such as for example in microarray-type bioassays.


Subject(s)
Biosensing Techniques/methods , Fluorescence , MicroRNAs/analysis , Photons , Humans , Limit of Detection , MicroRNAs/chemistry , Spectrometry, Fluorescence
11.
Biophys Chem ; 208: 54-61, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26091724

ABSTRACT

Hepatitis C virus (HCV) is one of the main causes of chronic liver disease worldwide. The diagnosis and monitoring of HCV infection is a crucial need in the clinical management. The conventional diagnostic technologies are challenged when trying to address molecular diagnostics, especially because they require a complex and time-consuming sample preparation phase. Here, a new concept based on surface functionalization was applied to viral RNA purification: first of all polydimethylsiloxane (PDMS) flat surfaces were modified to hold RNA adsorption. After a careful chemical and morphological analysis of the modified surfaces, the functionalization protocols giving the best RNA adsorbing surfaces were applied to PDMS microdevices. The functionalized microdevices were then used for RNA purification from HCV infected human plasma samples. RNA purification and RT were successfully performed in the same microdevice chamber, saving time of analysis, reagents, and labor. The PCR protocol for HCV cDNA amplification was also implemented in the microdevice, demonstrating that the entire process of HCV analysis, from plasma to molecular readout, could be performed on-chip. Not only HCV but also other microdevice-based viral RNA detection could therefore result in a successful Point-of-Care (POC) diagnostics for resource-limited settings.


Subject(s)
Hepacivirus/chemistry , Lab-On-A-Chip Devices , RNA, Viral/blood , RNA, Viral/isolation & purification , Adsorption , Dimethylpolysiloxanes/chemistry , Humans , Polymerase Chain Reaction , RNA, Viral/chemistry , Surface Properties
12.
Analyst ; 140(16): 5459-63, 2015 Aug 21.
Article in English | MEDLINE | ID: mdl-26140547

ABSTRACT

We report a novel sensing method for fluorescence-labelled microRNAs (miRNAs) spotted on an all-dielectric photonic structure. Such a photonic structure provides an enhanced excitation and a directional beaming of the emitted fluorescence, resulting in a significant improvement of the overall signal collected. As a result, the Limit of Detection (LoD) is demonstrated to decrease by a factor of about 50. A compact read-out system allows a wide-field imaging-based detection, with little or no optical alignment issues, which makes this approach particularly interesting for further development for example in microarray-type bioassays.


Subject(s)
Biosensing Techniques/methods , MicroRNAs/analysis , Photons , Spectrometry, Fluorescence/methods , Fluorescence , Humans , Limit of Detection , MicroRNAs/genetics
13.
Colloids Surf B Biointerfaces ; 116: 160-8, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24463152

ABSTRACT

The increasing interest in circulating microRNAs (miRNAs) as potential non-invasive cancer biomarkers has prompted the rapid development of several extraction techniques. However, current methods lack standardization and are costly and labor intensive. In light of this, we developed a microRNA solid-phase extraction strategy based on charge and roughness modulation on substrate surfaces. PECVD treated silicon oxide (PECVD-SO) and thermally grown silicon oxide (TG-SO) surfaces were functionalized with positively charged 3-aminopropyltriethoxysilanes (APTES) and neutral poly(ethylene glycol) silanes (PEG-s) mixed in different proportions to modulate the density of net positive charges and the roughness of the substrate. Characterization of the surfaces was performed by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and s-SDTB (sulfosuccinimidyl-4-o-(4,4-dimethoxytrityl) butyrate) assay in order to investigate the surface morphology and chemical composition, respectively. Adsorption and elution efficiency were assessed by fluorescence microscopy by means of synthetic fluorescently labeled microRNAs. We identified PECVD-SO functionalized with 0.1% APTES and 0.9% 21-24 units long PEG-s as a promising surface able to selectively bind microRNAs and release them in the presence of a basic buffer (pH=9) compatible with downstream analyses. MicroRNA integrity was assessed by reverse transcription and real-time PCR and confirmed by electrophoresis (Agilent 2100 Bioanalyzer), while binding competition from circulating DNA and proteins was excluded by fluorescence analyses and real-time PCR. On the contrary, total RNA slightly decreased miRNA adsorption. In conclusion, we showed an innovative and easy solid-state purification method for circulating miRNAs based on charge interaction, which could pave the path to future diagnostic and prognostic assays feasible as a routine test.


Subject(s)
MicroRNAs/isolation & purification , Plasma Gases/chemistry , Silicon Dioxide/chemistry , Surface Properties
14.
Biomed Microdevices ; 14(6): 1103-13, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22760263

ABSTRACT

Modern Lab-on-a-chip (LOC) platforms for genomic applications integrate several biological tasks in a single device. Combination of these processes into a single device minimizes sample loss and contamination problems as well as reducing analysis time and costs. Here we present a study of a microchip platform aimed at analyzing issues arising from the combination of different functions, such as DNA purification from blood, target amplification by PCR and DNA detection in a single silicon-based device. DNA purification is realized through two different strategies: 1) amine groups coating microchannel surfaces and 2) magnetic nanoparticles coated by chitosan. In the first strategy silicon/Pyrex microdevices coated with 3-aminopropyltriethoxysilane (APTES) or 3-2-(2-aminoethylamino)-ethylamino]-propyltrimethoxysilane (AEEA) were examined and their efficiency in human genomic DNA adsorption/desorption was evaluated. APTES treatment was the most suitable for the purification of a reasonable amount of DNA in a state suitable for the following PCR step. The second strategy has instead the main advantage of avoiding an elution step, since the DNA adsorbed on the magnetic nanoparticles can be used as PCR template. On-chip PCR was performed in a custom thermocycler, while the detection of PCR products was carried out by fluorescence reading. A complete genetic analysis was demonstrated on the monolithic silicon/Pyrex microchip, starting from less than 1 [Formula: see text]L of human whole blood and arriving at SNPs identification. The successful integration of DNA purification, amplification and detection on a single microdevice was proven without the need for biological passivation steps and possibly simplifying the realization of genomic detection devices.


Subject(s)
DNA/isolation & purification , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Silicon/chemistry , Chitosan/chemistry , Equipment Design/instrumentation , Erythrocytes/chemistry , Erythrocytes/cytology , Genome, Human , Humans , Nanoparticles/chemistry , Polymerase Chain Reaction/instrumentation , Polymerase Chain Reaction/methods , Propylamines , Silanes/metabolism
15.
J Membr Biol ; 227(1): 13-24, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19067025

ABSTRACT

The natural target of Staphylococcus aureus bicomponent gamma-hemolysins are leucocyte cell membranes. Because a proteinaceous receptor has not been found yet, we checked for the importance of the different membrane lipid compositions by measuring the activity of the toxin on several pure lipid model membranes. We investigated the effect of membrane thickness, fluidity, and presence of nonbilayer lipids and found that the toxin pore-forming ability increased in the presence of phosphocholines with short saturated acyl chains or with unsaturated chains even though not short. An increase of activity was also evident in the presence of cone-shaped lipids like phosphatidylethanolamine or diphytanoylphosphatidylcholine, whereas cylindrical lipids, like sphingomyelin, did not favor the activity. All these results suggest that gamma-hemolysins could bind to the bilayer only if the phosphatidylcholine (PC) head is freely accessible. This condition is satisfied by the concurrent presence of cholesterol and certain lipids, as highlighted by the so-called umbrella model (J. Huang and G. W. Feigenson, Biophys J 76:2142-2157, 1999). According to this model, cholesterol could help to a better exposition of PC head groups only if acyl chains are short or unsaturated. In fact, phosphatidylcholines with more than 13 carbon atoms acyl chains can cover cholesterol molecules; in this way, PC head groups pack tightly, rendering them inaccessible to the toxin, which thus shows a reduced pore-forming ability.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Toxins/chemistry , Bacterial Toxins/metabolism , Cell Membrane Permeability , Cell Membrane/metabolism , Hemolysin Proteins/chemistry , Hemolysin Proteins/metabolism , Lipid Bilayers/chemistry , Membrane Lipids/metabolism , Blood Cells , Flow Cytometry , Humans , Lipid Bilayers/metabolism , Lymphocytes/metabolism , Membrane Fluidity , Membrane Microdomains , Membranes, Artificial , Models, Biological , Porosity
16.
Bioconjug Chem ; 16(2): 369-76, 2005.
Article in English | MEDLINE | ID: mdl-15769091

ABSTRACT

Equinatoxin II is a pore forming toxin produced by the sea anemone Actinia equina. It is able to kill very unspecifically most cell types by the membrane-perturbing action of an amphiphilic alpha-helix located at its N-terminal. A normally active N-terminal mutant, containing one single cys in the amphiphilic alpha-helix, becomes totally inactive when it is bound to avidin via a biotinylated linker. By choosing, as a linker, a peptide containing a tumor protease cleavage site, we were able to construct an enzymatically activable conjugate which should be selective for tumor cells. The introduced cleavage site was designed in order to be digested by both cathepsin B and matrix metalloproteases (MMPs). We confirmed that this conjugate could be activated in vitro by cathepsin B and MMPs. After having measured the enzymatic activity of fibrosarcoma and breast carcinoma cells, we analyzed the cytotoxic effect of the conjugate on the same lines and on human red blood cells (HRBC) as controls. We found that the conjugate was activated, at least in part, by the tumor cell lines used, whereas it was inactive on HRBC. That the activation process was dependent on the enzymatic action of cathepsin B and MMPs, was indicated by three lines of evidence: (1) binding occurred normally on all type of cells including HRBC which however were insensitive being devoid of enzymes; (2) the cytotoxic effect correlated with the amount of cathepsin B activity expressed by the cells; (3) conjugate activation was reduced by specific inhibitors of cathepsin B and MMPs. These results demonstrate the possibility of tumor cell killing by a pore-forming toxin conjugate specifically activated by tumor proteases.


Subject(s)
Antineoplastic Agents/chemical synthesis , Cnidarian Venoms/administration & dosage , Drug Delivery Systems/methods , Neoplasm Proteins/metabolism , Peptides/metabolism , Animals , Antineoplastic Agents/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/enzymology , Breast Neoplasms/pathology , Cathepsin B/metabolism , Cell Line, Tumor , Cnidarian Venoms/chemistry , Cnidarian Venoms/genetics , Cross-Linking Reagents , Cytotoxins/administration & dosage , Cytotoxins/chemistry , Cytotoxins/genetics , Female , Fibrosarcoma/drug therapy , Fibrosarcoma/enzymology , Fibrosarcoma/pathology , Humans , Male , Matrix Metalloproteinases/metabolism , Mutation , Peptides/therapeutic use , Prodrugs/chemical synthesis , Prodrugs/metabolism , Sea Anemones/chemistry
17.
J Membr Biol ; 183(2): 125-35, 2001 Sep 15.
Article in English | MEDLINE | ID: mdl-11562794

ABSTRACT

The radius of the pore formed by sticholysin I and II (StI, StII) in erythrocytes and sticholysin I in lipid vesicles was investigated. The rate of colloid osmotic lysis of human erythrocytes, exposed to one of the toxins in the presence of sugars of different size, was measured. The relative permeability of each sugar was derived and the pore radius estimated with the Renkin equation. The radius was similar for sticholysin I and II and was independent of the reference sugar chosen and of the toxin concentration applied. It was also the same when erythrocytes were pretreated with different toxin doses in the presence of a polyethylene glycol (PEG) large enough to prevent lysis and thereafter transferred to solutions containing oligosaccharides of different size where they did lyse at different rates. The osmometric behavior of large unilamellar vesicles (LUV) was thereafter used to estimate the toxin lesion radius in a model system. LUV transferred to a hyperosmotic solution with a certain sugar immediately shrank and then re-swelled at a rate dependent on the bilayer permeability to water and sugar. When LUV were previously permeabilized with StI, only a fraction of them, namely those not carrying pores, continued to behave as osmometers. By increasing the size of the added sugar and approaching the pore radius, the fraction of osmometric LUV increased. Relative permeabilities were derived and used to estimate a channel radius around 1.2 nm, both for sugars and for PEGs. In conclusion the sticholysin pore has a constant size independent of toxin concentration and similar in natural and artificial membranes, suggesting it has a fixed predominant structure.


Subject(s)
Cnidarian Venoms/pharmacology , Erythrocyte Membrane/drug effects , Hemolysin Proteins/pharmacology , Ion Channels/drug effects , Animals , Colloids , Fluorescence , Intracellular Membranes/physiology , Kinetics , Liposomes , Mathematics , Membrane Lipids/metabolism , Oligosaccharides/physiology , Organic Chemicals , Osmotic Pressure , Polyethylene Glycols/pharmacology , Sea Anemones , Time Factors
18.
Biophys J ; 80(6): 2761-74, 2001 Jun.
Article in English | MEDLINE | ID: mdl-11371451

ABSTRACT

Sticholysin I and II (St I and St II), two basic cytolysins purified from the Caribbean sea anemone Stichodactyla helianthus, efficiently permeabilize lipid vesicles by forming pores in their membranes. A general characteristic of these toxins is their preference for membranes containing sphingomyelin (SM). As a consequence, vesicles formed by equimolar mixtures of SM with phosphatidylcholine (PC) are very good targets for St I and II. To better characterize the lipid dependence of the cytolysin-membrane interaction, we have now evaluated the effect of including different lipids in the composition of the vesicles. We observed that at low doses of either St I or St II vesicles composed of SM and phosphatidic acid (PA) were permeabilized faster and to a higher extent than vesicles of PC and SM. As in the case of PC/SM mixtures, permeabilization was optimal when the molar ratio of PA/SM was ~1. The preference for membranes containing PA was confirmed by inhibition experiments in which the hemolytic activity of St I was diminished by pre-incubation with vesicles of different composition. The inclusion of even small proportions of PA into PC/SM LUVs led to a marked increase in calcein release caused by both St I and St II, reaching maximal effect at ~5 mol % of PA. Inclusion of other negatively charged lipids (phosphatidylserine (PS), phosphatidylglycerol (PG), phosphatidylinositol (PI), or cardiolipin (CL)), all at 5 mol %, also elicited an increase in calcein release, the potency being in the order CL approximately PA >> PG approximately PI approximately PS. However, some boosting effect was also obtained, including the zwitterionic lipid phosphatidylethanolamine (PE) or even, albeit to a lesser extent, the positively charged lipid stearylamine (SA). This indicated that the effect was not mediated by electrostatic interactions between the cytolysin and the negative surface of the vesicles. In fact, increasing the ionic strength of the medium had only a small inhibitory effect on the interaction, but this was actually larger with uncharged vesicles than with negatively charged vesicles. A study of the fluidity of the different vesicles, probed by the environment-sensitive fluorescent dye diphenylhexatriene (DPH), showed that toxin activity was also not correlated to the average membrane fluidity. It is suggested that the insertion of the toxin channel could imply the formation in the bilayer of a nonlamellar structure, a toroidal lipid pore. In this case, the presence of lipids favoring a nonlamellar phase, in particular PA and CL, strong inducers of negative curvature in the bilayer, could help in the formation of the pore. This possibility is confirmed by the fact that the formation of toxin pores strongly promotes the rate of transbilayer movement of lipid molecules, which indicates local disruption of the lamellar structure.


Subject(s)
Cell Membrane Permeability , Cnidarian Venoms/metabolism , Hemolysin Proteins/metabolism , Liposomes/chemistry , Liposomes/metabolism , Membrane Lipids/metabolism , Sea Anemones , Animals , Cardiolipins/metabolism , Fluoresceins/metabolism , Hemolysis , Models, Biological , Organic Chemicals , Osmolar Concentration , Phosphatidic Acids/metabolism , Phosphatidylglycerols/metabolism , Phosphatidylinositols/metabolism , Phosphatidylserines/metabolism , Spectrometry, Fluorescence , Static Electricity
19.
Int J Cancer ; 86(4): 582-9, 2000 May 15.
Article in English | MEDLINE | ID: mdl-10797275

ABSTRACT

Three chimeric proteins were obtained by fusing together the dianthin gene and DNA fragments encoding for the following membrane-acting peptides: the N-terminus of protein G of the vesicular stomatitis virus (KFT25), the N terminus of the HA2 hemagglutinin of influenza virus (pHA2), and a membrane-acting peptide (pJVE). Chimeric dianthins (KFT25DIA, pHA2DIA and pJVEDIA) retained full enzymatic activity in cell-free assays and showed increased ability to induce pH-dependent calcein release from large unilamellar vesicles (LUVs). pHA2DIA and pJVEDIA also showed faster kinetics of interaction with LUVs, while KFT25DIA and pHA2DIA displayed a reduced cytotoxicity as compared to wild-type dianthin. Conjugates made by chemically cross-linking KFT25DIA or pJVEDIA and human transferrin (Tfn) showed greater cell-killing efficiency than conjugates of Tfn and wild-type dianthin. As a consequence, by fusion of membrane-acting peptides to the dianthin sequence the specificity factor (i.e., the ratio between non-specific and specific toxicity) of Tfn-KFT25DIA, Tfn-pHA2DIA and Tfn-pJVEDIA was increased with respect to that of Tfn-based conjugates made with wild-type dianthin. Taken together, our results suggest that genetic fusion of membrane-acting peptides to enzymatic cytotoxins results in the acquisition of new physico-chemical properties exploitable for designing new recombinant cytotoxins and to tackle cell-intoxication mechanisms.


Subject(s)
Immunotoxins/pharmacology , Lipid Bilayers , Plant Proteins/pharmacology , Recombinant Fusion Proteins/pharmacology , Transferrin/pharmacology , Humans , Hydrogen-Ion Concentration , Jurkat Cells , Membranes, Artificial , Monensin/pharmacology , Ribosome Inactivating Proteins, Type 1
20.
J Membr Biol ; 173(1): 47-55, 2000 Jan 01.
Article in English | MEDLINE | ID: mdl-10612691

ABSTRACT

Among eighteen point mutants of equinatoxin II produced in E. coli, containing a single cystein substitution at variable position, EqtIIK77C was chosen for its peculiar properties. It was almost 100 times less hemolytic than the wild-type, but its hemolytic activity could be restored by chemical modification of the thiol group, provided that a positive charge was reintroduced. This indicates that a positive charge at this position is necessary for toxin activity. The mutant formed larger pores as compared to the wild type, but displayed the same cation selectivity. The pores reverted to normal size upon reintroduction of the positive charge. The conformation of EqtIIK77C and its binding to lipid membranes, either vesicles or red blood cells, was almost normal. However the kinetics of calcein release from lipid vesicles was substantially slower than that of the wild-type. Taken together with the different size of the pore formed, this is an indication that mutation of Lys77 --> Cys influences the normal development of the aggregate which is required for assembling the functional pore.


Subject(s)
Cnidarian Venoms/chemistry , Cnidarian Venoms/toxicity , Cytotoxins/chemistry , Lysine , Amino Acid Substitution , Animals , Binding Sites , Cnidarian Venoms/blood , Cytotoxins/blood , Cytotoxins/toxicity , Erythrocyte Membrane/drug effects , Erythrocytes/drug effects , Escherichia coli , Hemolysis , Humans , In Vitro Techniques , Kinetics , Mutagenesis, Site-Directed , Point Mutation , Recombinant Proteins/blood , Recombinant Proteins/chemistry , Recombinant Proteins/toxicity , Sea Anemones , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...