Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Front Physiol ; 14: 1060919, 2023.
Article in English | MEDLINE | ID: mdl-37885805

ABSTRACT

Objective: Chronic kidney disease patients have a decreased ability to maintain normal electrolyte concentrations in their blood, which increases the risk for ventricular arrhythmias and sudden cardiac death. Non-invasive monitoring of serum potassium and calcium concentration, [K+] and [Ca2+], can help to prevent arrhythmias in these patients. Electrocardiogram (ECG) markers that significantly correlate with [K+] and [Ca2+] have been proposed, but these relations are highly variable between patients. We hypothesized that inter-individual differences in cell type distribution across the ventricular wall can help to explain this variability. Methods: A population of human heart-torso models were built with different proportions of endocardial, midmyocardial and epicardial cells. Propagation of ventricular electrical activity was described by a reaction-diffusion model, with modified Ten Tusscher-Panfilov dynamics. [K+] and [Ca2+] were varied individually and in combination. Twelve-lead ECGs were simulated and the width, amplitude and morphological variability of T waves and QRS complexes were quantified. Results were compared to measurements from 29 end-stage renal disease (ESRD) patients undergoing hemodialysis (HD). Results: Both simulations and patients data showed that most of the analyzed T wave and QRS complex markers correlated strongly with [K+] (absolute median Pearson correlation coefficients, r, ranging from 0.68 to 0.98) and [Ca2+] (ranging from 0.70 to 0.98). The same sign and similar magnitude of median r was observed in the simulations and the patients. Different cell type distributions in the ventricular wall led to variability in ECG markers that was accentuated at high [K+] and low [Ca2+], in agreement with the larger variability between patients measured at the onset of HD. The simulated ECG variability explained part of the measured inter-patient variability. Conclusion: Changes in ECG markers were similarly related to [K+] and [Ca2+] variations in our models and in the ESRD patients. The high inter-patient ECG variability may be explained by variations in cell type distribution across the ventricular wall, with high sensitivity to variations in the proportion of epicardial cells. Significance: Differences in ventricular wall composition help to explain inter-patient variability in ECG response to [K+] and [Ca2+]. This finding can be used to improve serum electrolyte monitoring in ESRD patients.

2.
IEEE Trans Biomed Eng ; 70(1): 55-66, 2023 01.
Article in English | MEDLINE | ID: mdl-35724290

ABSTRACT

OBJECTIVE: Noninvasive electrocardiographic imaging (ECGI) reconstructs cardiac electrical activity from body surface potential measurements. However, current methods have demonstrated inaccuracies in reconstructing sinus rhythm, and in particular breakthrough sites. This study aims to combine existing inverse algorithms, making the most of their advantages while minimizing their limitations. METHOD: The "patchwork method" (PM) combines two classical numerical methods for ECGI: the method of fundamental solutions (MFS) and the finite-element method (FEM). We assume that the method with the smallest residual in the predicted torso potentials, computed using the boundary element method (BEM), provides the most accurate solution. The PM selects for each heart node and time step the method whose estimated reconstruction error is smallest. The performance of the PM was evaluated using simulated ectopic and normal ventricular beats. RESULTS: Cardiac potentials and activation maps obtained with the PM (CC = 0.63 ± 0.01 and 0.61 ± 0.05 respectively) were more accurate than MFS (CC = 0.61 ± 0.01 and 0.48 ± 0.05 respectively), FEM (CC = 0.58 ± 0.01 and 0.51 ± 0.02 respectively) or BEM (CC = 0.57 ± 0.02 and 0.49 ± 0.02 respectively). The PM also located all epicardial breakthrough sites, whereas the traditional numerical methods usually missed one. Furthermore, the PM showed its robustness and stability in the presence of Gaussian noise added to the torso potentials. CONCLUSION: The PM overcomes some of the limitations of classical numerical methods, improving the accuracy of mapping important features of activation during sinus rhythm and paced beats. SIGNIFICANCE: This novel method for optimizing ECGI solutions opens a new avenue for improving not only ECGI but also other inverse problems.


Subject(s)
Electrocardiography , Heart , Humans , Electrocardiography/methods , Heart/physiology , Arrhythmias, Cardiac , Diagnostic Imaging , Heart Ventricles , Body Surface Potential Mapping/methods
3.
Sensors (Basel) ; 22(8)2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35458934

ABSTRACT

OBJECTIVE: Non-invasive estimation of serum potassium, [K+], and calcium, [Ca2+], can help to prevent life-threatening ventricular arrhythmias in patients with advanced renal disease, but current methods for estimation of electrolyte levels have limitations. We aimed to develop new markers based on the morphology of the QRS complex of the electrocardiogram (ECG). METHODS: ECG recordings from 29 patients undergoing hemodialysis (HD) were processed. Mean warped QRS complexes were computed in two-minute windows at the start of an HD session, at the end of each HD hour and 48 h after it. We quantified QRS width, amplitude and the proposed QRS morphology-based markers that were computed by warping techniques. Reference [K+] and [Ca2+] were determined from blood samples acquired at the time points where the markers were estimated. Linear regression models were used to estimate electrolyte levels from the QRS markers individually and in combination with T wave morphology markers. Leave-one-out cross-validation was used to assess the performance of the estimators. RESULTS: All markers, except for QRS width, strongly correlated with [K+] (median Pearson correlation coefficients, r, ranging from 0.81 to 0.87) and with [Ca2+] (r ranging from 0.61 to 0.76). QRS morphology markers showed very low sensitivity to heart rate (HR). Actual and estimated serum electrolyte levels differed, on average, by less than 0.035 mM (relative error of 0.018) for [K+] and 0.010 mM (relative error of 0.004) for [Ca2+] when patient-specific multivariable estimators combining QRS and T wave markers were used. CONCLUSION: QRS morphological markers allow non-invasive estimation of [K+] and [Ca2+] with low sensitivity to HR. The estimation performance is improved when multivariable models, including T wave markers, are considered. SIGNIFICANCE: Markers based on the QRS complex of the ECG could contribute to non-invasive monitoring of serum electrolyte levels and arrhythmia risk prediction in patients with renal disease.


Subject(s)
Calcium , Kidney Failure, Chronic , Arrhythmias, Cardiac/diagnosis , Electrocardiography , Electrolytes , Female , Humans , Male , Potassium
4.
Comput Biol Med ; 143: 105304, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35168084

ABSTRACT

OBJECTIVE: Noninvasive screening of hypo- and hyperkalemia can prevent fatal arrhythmia in end-stage renal disease (ESRD) patients, but current methods for monitoring of serum potassium (K+) have important limitations. We investigated changes in nonlinear dynamics and morphology of the T wave in the electrocardiogram (ECG) of ESRD patients during hemodialysis (HD), assessing their relationship with K+ and designing a K+ estimator. METHODS: ECG recordings from twenty-nine ESRD patients undergoing HD were processed. T waves in 2-min windows were extracted at each hour during an HD session as well as at 48 h after HD start. T wave nonlinear dynamics were characterized by two indices related to the maximum Lyapunov exponent (λt, λwt) and a divergence-related index (η). Morphological variability in the T wave was evaluated by three time warping-based indices (dw, reflecting morphological variability in the time domain, and da and daNL, in the amplitude domain). K+was measured from blood samples extracted during and after HD. Stage-specific and patient-specific K+ estimators were built based on the quantified indices and leave-one-out cross-validation was performed separately for each of the estimators. RESULTS: The analyzed indices showed high inter-individual variability in their relationship with K+. Nevertheless, all of them had higher values at the HD start and 48 h after it, corresponding to the highest K+. The indices η and dw were the most strongly correlated with K+ (median Pearson correlation coefficient of 0.78 and 0.83, respectively) and were used in univariable and multivariable linear K+ estimators. Agreement between actual and estimated K+ was confirmed, with averaged errors over patients and time points being 0.000 ± 0.875 mM and 0.046 ± 0.690 mM for stage-specific and patient-specific multivariable K+ estimators, respectively. CONCLUSION: ECG descriptors of T wave nonlinear dynamics and morphological variability allow noninvasive monitoring of K+ in ESRD patients. SIGNIFICANCE: ECG markers have the potential to be used for hypo- and hyperkalemia screening in ESRD patients.

5.
Heart Rhythm ; 18(8): 1352-1360, 2021 08.
Article in English | MEDLINE | ID: mdl-33831543

ABSTRACT

BACKGROUND: Possible mechanisms of left-axis deviation (LAD) in the setting of left bundle branch block (LBBB) include differences in cardiac electrophysiology, structure, or anatomic axis. OBJECTIVE: The purpose of this study was to clarify the mechanism(s) responsible for LAD in patients with LBBB. METHODS: Twenty-nine patients with nonischemic cardiomyopathies and LBBB underwent noninvasive electrocardiographic imaging (ECGi), cardiac computed tomography, and magnetic resonance imaging in order to define ventricular electrical activation, characterize cardiac structure, and determine the cardiac anatomic axis. RESULTS: Sixteen patients had a normal QRS axis (NA) (mean axis 8° ± 23°), whereas 13 patients had LAD (mean axis -48° ± 13°; P <.001). Total activation times were longer in the LAD group (112 ± 25 ms vs 91 ± 14 ms; P = .01) due to delayed activation of the basal anterolateral region (107 ± 10 ms vs 81 ± 17 ms; P <.001). Left ventricular (LV) activation in patients with LAD was from apex to base, in contrast to a circumferential pattern of activation in patients with NA. Apex-to-base delay was longer in the LA group (95 ± 13 ms vs 64 ± 21 ms; P <.001) and correlated with QRS frontal axis (R2 = 0.67; P <.001). Both groups were comparable with regard to LV end-diastolic volume (295 ± 84 mL vs LAD 310 ± 91 mL; P = .69), LV mass (177 ± 33 g vs LAD 180 ± 37 g; P = .83), and anatomic axis. CONCLUSION: LAD in LBBB appears to be due to electrophysiological abnormalities rather than structural factors or cardiac anatomic axis.


Subject(s)
Bundle-Branch Block/physiopathology , Cardiac Resynchronization Therapy/methods , Electrocardiography/methods , Heart Failure/physiopathology , Heart Ventricles/physiopathology , Aged , Bundle-Branch Block/complications , Bundle-Branch Block/therapy , Electromagnetic Phenomena , Female , Heart Failure/complications , Heart Failure/therapy , Humans , Male , Middle Aged
6.
Front Physiol ; 12: 648396, 2021.
Article in English | MEDLINE | ID: mdl-33833689

ABSTRACT

Ablation of sites showing Purkinje activity is antiarrhythmic in some patients with idiopathic ventricular fibrillation (iVF). The mechanism for the therapeutic success of ablation is not fully understood. We propose that deeper penetrance of the Purkinje network allows faster activation of the ventricles and is proarrhythmic in the presence of steep repolarization gradients. Reduction of Purkinje penetrance, or its indirect reducing effect on apparent propagation velocity may be a therapeutic target in patients with iVF.

7.
Europace ; 23(23 Suppl 1): i161-i168, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33751085

ABSTRACT

AIMS: Recent clinical studies showed that antiarrhythmic drug (AAD) treatment and pulmonary vein isolation (PVI) synergistically reduce atrial fibrillation (AF) recurrences after initially successful ablation. Among newly developed atrial-selective AADs, inhibitors of the G-protein-gated acetylcholine-activated inward rectifier current (IKACh) were shown to effectively suppress AF in an experimental model but have not yet been evaluated clinically. We tested in silico whether inhibition of inward rectifier current or its combination with PVI reduces AF inducibility. METHODS AND RESULTS: We simulated the effect of inward rectifier current blockade (IK blockade), PVI, and their combination on AF inducibility in a detailed three-dimensional model of the human atria with different degrees of fibrosis. IK blockade was simulated with a 30% reduction of its conductivity. Atrial fibrillation was initiated using incremental pacing applied at 20 different locations, in both atria. IK blockade effectively prevented AF induction in simulations without fibrosis as did PVI in simulations without fibrosis and with moderate fibrosis. Both interventions lost their efficacy in severe fibrosis. The combination of IK blockade and PVI prevented AF in simulations without fibrosis, with moderate fibrosis, and even with severe fibrosis. The combined therapy strongly decreased the number of fibrillation waves, due to a synergistic reduction of wavefront generation rate while the wavefront lifespan remained unchanged. CONCLUSION: Newly developed blockers of atrial-specific inward rectifier currents, such as IKAch, might prevent AF occurrences and when combined with PVI effectively supress AF recurrences in human.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Pulmonary Veins , Anti-Arrhythmia Agents/therapeutic use , Atrial Fibrillation/drug therapy , Atrial Fibrillation/surgery , Computer Simulation , Humans , Pulmonary Veins/surgery , Recurrence , Treatment Outcome
8.
Int J Mol Sci ; 22(4)2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33557237

ABSTRACT

Brugada syndrome and early repolarization syndrome are both classified as J-wave syndromes, with a similar mechanism of arrhythmogenesis and with the same basis for genesis of the characteristic electrocardiographic features. The Brugada syndrome is now considered a conduction disorder based on subtle structural abnormalities in the right ventricular outflow tract. Recent evidence suggests structural substrate in patients with the early repolarization syndrome as well. We propose a unifying mechanism based on these structural abnormalities explaining both arrhythmogenesis and the electrocardiographic changes. In addition, we speculate that, with increasing technical advances in imaging techniques and their spatial resolution, these syndromes will be reclassified as structural heart diseases or cardiomyopathies.


Subject(s)
Arrhythmias, Cardiac/pathology , Brugada Syndrome/pathology , Cardiac Conduction System Disease/pathology , Fibrosis/physiopathology , Heart Conduction System/abnormalities , Animals , Arrhythmias, Cardiac/etiology , Brugada Syndrome/etiology , Cardiac Conduction System Disease/etiology , Humans
10.
Europace ; 23(4): 640-647, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33241411

ABSTRACT

AIMS: Non-invasive imaging of electrical activation requires high-density body surface potential mapping. The nine electrodes of the 12-lead electrocardiogram (ECG) are insufficient for a reliable reconstruction with standard inverse methods. Patient-specific modelling may offer an alternative route to physiologically constraint the reconstruction. The aim of the study was to assess the feasibility of reconstructing the fully 3D electrical activation map of the ventricles from the 12-lead ECG and cardiovascular magnetic resonance (CMR). METHODS AND RESULTS: Ventricular activation was estimated by iteratively optimizing the parameters (conduction velocity and sites of earliest activation) of a patient-specific model to fit the simulated to the recorded ECG. Chest and cardiac anatomy of 11 patients (QRS duration 126-180 ms, documented scar in two) were segmented from CMR images. Scar presence was assessed by magnetic resonance (MR) contrast enhancement. Activation sequences were modelled with a physiologically based propagation model and ECGs with lead field theory. Validation was performed by comparing reconstructed activation maps with those acquired by invasive electroanatomical mapping of coronary sinus/veins (CS) and right ventricular (RV) and left ventricular (LV) endocardium. The QRS complex was correctly reproduced by the model (Pearson's correlation r = 0.923). Reconstructions accurately located the earliest and latest activated LV regions (median barycentre distance 8.2 mm, IQR 8.8 mm). Correlation of simulated with recorded activation time was very good at LV endocardium (r = 0.83) and good at CS (r = 0.68) and RV endocardium (r = 0.58). CONCLUSION: Non-invasive assessment of biventricular 3D activation using the 12-lead ECG and MR imaging is feasible. Potential applications include patient-specific modelling and pre-/per-procedural evaluation of ventricular activation.


Subject(s)
Electrocardiography , Patient-Specific Modeling , Body Surface Potential Mapping , Heart Ventricles/diagnostic imaging , Humans , Magnetic Resonance Imaging
11.
IEEE Trans Biomed Eng ; 68(8): 2467-2478, 2021 08.
Article in English | MEDLINE | ID: mdl-33301399

ABSTRACT

OBJECTIVE: Chronic kidney disease affects more than 10% of the world population. Changes in serum ion concentrations increase the risk for ventricular arrhythmias and sudden cardiac death, particularly in end-stage renal disease (ESRD) patients. We characterized how T wave amplitude, duration and morphology descriptors change with variations in serum levels of potassium and calcium and in heart rate, both in ESRD patients and in simulated ventricular fibers. METHODS: Electrocardiogram (ECG) recordings from twenty ESRD patients undergoing hemodialysis (HD) and pseudo-ECGs (pECGs) calculated from twenty-two simulated ventricular fibers at varying transmural heterogeneity levels were processed to quantify T wave width ( Tw), T wave slope-to-amplitude ratio ([Formula: see text]) and four indices of T wave morphological variability based on time warping ( dw, [Formula: see text], da and [Formula: see text]). Serum potassium and calcium levels and heart rate were measured along HD. RESULTS: [Formula: see text] was the marker most strongly correlated with serum potassium, dw with calcium and da with heart rate, after correction for covariates. Median values of partial correlation coefficients were 0.75, -0.74 and -0.90, respectively. For all analyzed T wave descriptors, high inter-patient variability was observed in the pattern of such relationships. This variability, accentuated during the first HD time points, was reproduced in the simulations and shown to be influenced by differences in transmural heterogeneity. CONCLUSION: Changes in serum potassium and calcium levels and in heart rate strongly affect T wave descriptors, particularly those quantifying morphological variability. SIGNIFICANCE: ECG markers have the potential to be used for monitoring serum ion concentrations in ESRD patients.


Subject(s)
Arrhythmias, Cardiac , Kidney Failure, Chronic , Arrhythmias, Cardiac/etiology , Electrocardiography , Electrolytes , Heart Rate , Humans , Kidney Failure, Chronic/therapy , Renal Dialysis
12.
Eur Heart J ; 41(48): 4556-4564, 2020 12 21.
Article in English | MEDLINE | ID: mdl-32128588

ABSTRACT

Providing therapies tailored to each patient is the vision of precision medicine, enabled by the increasing ability to capture extensive data about individual patients. In this position paper, we argue that the second enabling pillar towards this vision is the increasing power of computers and algorithms to learn, reason, and build the 'digital twin' of a patient. Computational models are boosting the capacity to draw diagnosis and prognosis, and future treatments will be tailored not only to current health status and data, but also to an accurate projection of the pathways to restore health by model predictions. The early steps of the digital twin in the area of cardiovascular medicine are reviewed in this article, together with a discussion of the challenges and opportunities ahead. We emphasize the synergies between mechanistic and statistical models in accelerating cardiovascular research and enabling the vision of precision medicine.


Subject(s)
Artificial Intelligence , Cardiology , Algorithms , Humans , Precision Medicine
13.
Front Physiol ; 11: 68, 2020.
Article in English | MEDLINE | ID: mdl-32153419

ABSTRACT

BACKGROUND: Atrial fibrillation (AF) is accompanied by progressive epicardial fibrosis, dissociation of electrical activity between the epicardial layer and the endocardial bundle network, and transmural conduction (breakthroughs). However, causal relationships between these phenomena have not been demonstrated yet. Our goal was to test the hypothesis that epicardial fibrosis suffices to increase endo-epicardial dissociation (EED) and breakthroughs (BT) during AF. METHODS: We simulated the effect of fibrosis in the epicardial layer on EED and BT in a detailed, high-resolution, three-dimensional model of the human atria with realistic electrophysiology. The model results were compared with simultaneous endo-epicardial mapping in human atria. The model geometry, specifically built for this study, was based on MR images and histo-anatomical studies. Clinical data were obtained in four patients with longstanding persistent AF (persAF) and three patients without a history of AF. RESULTS: The AF cycle length (AFCL), conduction velocity (CV), and EED were comparable in the mapping studies and the simulations. EED increased from 24.1 ± 3.4 to 56.58 ± 6.2% (p < 0.05), and number of BTs per cycle from 0.89 ± 0.55 to 6.74 ± 2.11% (p < 0.05), in different degrees of fibrosis in the epicardial layer. In both mapping data and simulations, EED correlated with prevalence of BTs. Fibrosis also increased the number of fibrillation waves per cycle in the model. CONCLUSION: A realistic 3D computer model of AF in which epicardial fibrosis was increased, in the absence of other pathological changes, showed increases in EED and epicardial BT comparable to those in longstanding persAF. Thus, epicardial fibrosis can explain both phenomena.

14.
Card Electrophysiol Clin ; 11(4): 699-709, 2019 12.
Article in English | MEDLINE | ID: mdl-31706476

ABSTRACT

Idiopathic ventricular fibrillation and J-wave syndromes are causes of sudden cardiac death (SCD) without any identified structural cardiac disease after extensive investigations. Recent data show that high-density electrophysiological mapping may ultimately offer diagnoses of subclinical diseases in most patients including those termed "unexplained" SCD. Three major conditions can underlie the occurrence of SCD: (1) localized depolarization abnormalities (due to microstructural myocardial alteration), (2) Purkinje abnormalities manifesting as triggering ectopy and inducible reentry; or (3) repolarization heterogeneities. Each condition may result from a spectrum of pathophysiologic processes with implications for individual therapy.


Subject(s)
Brugada Syndrome , Electrophysiologic Techniques, Cardiac , Ventricular Fibrillation , Brugada Syndrome/complications , Brugada Syndrome/diagnostic imaging , Brugada Syndrome/physiopathology , Death, Sudden, Cardiac/etiology , Electrocardiography , Heart Conduction System/diagnostic imaging , Heart Conduction System/physiopathology , Humans , Ventricular Fibrillation/complications , Ventricular Fibrillation/diagnostic imaging , Ventricular Fibrillation/physiopathology
15.
Heart Rhythm ; 16(5): 781-790, 2019 05.
Article in English | MEDLINE | ID: mdl-30391571

ABSTRACT

Early repolarization indicates a distinct electrocardiographic phenotype affecting the junction between the QRS complex and the ST segment in inferolateral leads (inferolateral J-wave syndromes). It has been considered a benign electrocardiographic variant for decades, but recent clinical studies have demonstrated its arrhythmogenicity in a small subset, supported by experimental studies showing transmural dispersion of repolarization. Here we review the current knowledge and the issues of risk stratification that limit clinical management. In addition, we report on new mapping data of patients refractory to pharmacologic treatment using high-density electrogram mapping at the time of inscription of J wave. These data demonstrate that distinct substrates, delayed depolarization, and abnormal early repolarization underlie inferolateral J-wave syndromes, with significant implications. Finally, based on these data, we propose a new simplified mechanistic classification of sudden cardiac deaths without apparent structural heart disease.


Subject(s)
Arrhythmias, Cardiac , Death, Sudden, Cardiac , Electrocardiography/methods , Electrophysiologic Techniques, Cardiac/methods , Arrhythmias, Cardiac/complications , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/physiopathology , Death, Sudden, Cardiac/etiology , Death, Sudden, Cardiac/prevention & control , Heart Conduction System/physiopathology , Humans , Risk Assessment
16.
Europace ; 20(suppl_3): iii26-iii35, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30476052

ABSTRACT

AIMS: P-wave beat-to-beat morphological variability can identify patients prone to paroxysmal atrial fibrillation (AF). To date, no computational study has been carried out to mechanistically explain such finding. The aim of this study was to provide a pathophysiological explanation, by using a computer model of the human atria, of the correlation between P-wave beat-to-beat variability and the risk of AF. METHODS AND RESULTS: A physiological variability in the earliest activation site (EAS), on a beat-to-beat basis, was introduced into a computer model of the human atria by randomizing the EAS location. A methodology for generating multi-scale, spatially-correlated regions of heterogeneous conduction was developed. P-wave variability in the presence of such regions was compared with a control case. Simulations were performed with an eikonal model, for the activation map, and with the lead field approach, for P-wave computation. The methodology was eventually compared with a reference monodomain simulation. A total of 60 P-waves were simulated for each sinus node exit location (12 in total), and for each of the 15 patterns of heterogeneous conduction automatically generated by the model. A P-wave beat-to-beat variability was observed in all cases. Variability was significantly increased in presence of heterogeneous slow conducting regions, up to two-fold the variability in the control case. P-wave variability increased non-linearly with respect to the EAS variability and total area of slow conduction. Distribution of the heterogeneous conduction was more effective in increasing the variability when it surrounded the EAS locations and the fast conducting bundles. P-waves simulated by the eikonal approach compared excellently with the monodomain-based ones. CONCLUSION: P-wave variability in patients with paroxysmal AF could be explained by a variability in sinoatrial node exit location in combination with slow conducting regions.


Subject(s)
Action Potentials , Atrial Fibrillation/physiopathology , Computer Simulation , Heart Atria/physiopathology , Heart Rate , Models, Cardiovascular , Atrial Fibrillation/diagnosis , Electrocardiography , Electrophysiologic Techniques, Cardiac , Heart Atria/diagnostic imaging , Humans , Magnetic Resonance Imaging , Time Factors
17.
Europace ; 20(suppl_3): iii77-iii86, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30476054

ABSTRACT

AIMS: The aim of this study was to investigate the influence of the activation sequence on voltage amplitudes by evaluating regional voltage differences during a left bundle branch block (LBBB) activation sequence vs. a normal synchronous activation sequence and by evaluating pacing-induced voltage differences. METHODS AND RESULTS: Twenty-one patients and three computer models without scar were studied. Regional voltage amplitudes were evaluated in nine LBBB patients who underwent endocardial electro-anatomic mapping (EAM). Pacing-induced voltage differences were evaluated in 12 patients who underwent epicardial EAM during intrinsic rhythm and right ventricular (RV) pacing. Three computer models customized for LBBB patients were created. Changes in voltage amplitudes after an LBBB (intrinsic), a normal synchronous, an RV pacing, and a left ventricular pacing activation sequence were assessed in the computer models. Unipolar voltage amplitudes in patients were approximately 4.5 mV (4.4-4.7 mV, ∼33%) lower in the septum when compared with other segments. A normal synchronous activation sequence in the computer models normalized voltage amplitudes in the septum. Pacing-induced differences were larger in electrograms with higher voltage amplitudes during intrinsic rhythm and furthermore larger and more variable at the epicardium [mean absolute difference: 3.6-6.2 mV, 40-53% of intrinsic value; interquartile range (IQR) differences: 53-63% of intrinsic value] compared to the endocardium (mean absolute difference: 3.3-3.8 mV, 28-30% of intrinsic value; IQR differences: 37-40% of intrinsic value). CONCLUSION: In patients and computer models without scar, lower septal unipolar voltage amplitudes are exclusively associated with an LBBB activation sequence. Pacing substantially affects voltage amplitudes, particularly at the epicardium.


Subject(s)
Action Potentials , Bundle of His/physiopathology , Bundle-Branch Block/therapy , Cardiac Pacing, Artificial/methods , Computer Simulation , Heart Rate , Models, Cardiovascular , Adult , Aged , Aged, 80 and over , Bundle of His/diagnostic imaging , Bundle-Branch Block/diagnosis , Bundle-Branch Block/physiopathology , Electrocardiography , Electrophysiologic Techniques, Cardiac , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Time Factors , Treatment Outcome , Ventricular Function, Left , Ventricular Function, Right
18.
Europace ; 20(suppl_3): iii69-iii76, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30476060

ABSTRACT

AIMS: Atrial fibrillation (AF) is a progressive arrhythmia characterized by structural alterations that increase its stability. Both clinical and experimental studies showed a concomitant loss of antiarrhythmic drug efficacy in later stages of AF. The mechanisms underlying this loss of efficacy are not well understood. We hypothesized that structural remodelling may explain this reduced efficacy by making the substrate more three-dimensional. To investigate this, we simulated the effect of sodium (Na+)-channel block on AF in a model of progressive transmural uncoupling. METHODS AND RESULTS: In a computer model consisting of two cross-connected atrial layers, with realistic atrial membrane behaviour, structural remodelling was simulated by reducing the number of connections between the layers. 100% of endo-epicardial connectivity represented a healthy atrium. At various degrees of structural remodelling, we assessed the effect of 60% sodium channel block on AF stability, endo-epicardial electrical activity dissociation (EED), and fibrillatory conduction pattern complexity quantified by number of waves, phase singularities (PSs), and transmural conduction ('breakthrough', BT). Sodium channel block terminated AF in non-remodelled but not in remodelled atria. The temporal excitable gap (EG) and AF cycle length increased at all degrees of remodelling when compared with control. Despite an increase of EED and EG, sodium channel block decreased the incidence of BT because of transmural conduction block. Sodium channel block decreased the number of waves and PSs in normal atrium but not in structurally remodelled atrium. CONCLUSION: This simple atrial model explains the loss of efficacy of sodium channel blockers in terminating AF in the presence of severe structural remodelling as has been observed experimentally and clinically. Atrial fibrillation termination in atria with moderate structural remodelling in the presence of sodium channel block is caused by reduction of AF complexity. With more severe structural remodelling, sodium channel block fails to promote synchronization of the two layers of the model.


Subject(s)
Action Potentials/drug effects , Anti-Arrhythmia Agents/therapeutic use , Atrial Fibrillation/drug therapy , Computer Simulation , Heart Atria/drug effects , Heart Rate/drug effects , Models, Cardiovascular , Sodium Channel Blockers/therapeutic use , Atrial Fibrillation/diagnosis , Atrial Fibrillation/physiopathology , Atrial Remodeling , Heart Atria/physiopathology , Humans , Time Factors , Treatment Failure
19.
Circ Arrhythm Electrophysiol ; 11(7): e006120, 2018 07.
Article in English | MEDLINE | ID: mdl-30002064

ABSTRACT

BACKGROUND: Sudden cardiac death because of ventricular fibrillation (VF) is commonly unexplained in younger victims. Detailed electrophysiological mapping in such patients has not been reported. METHODS: We evaluated 24 patients (29±13 years) who survived idiopathic VF. First, we used multielectrode body surface recordings to identify the drivers maintaining VF. Then, we analyzed electrograms in the driver regions using endocardial and epicardial catheter mapping during sinus rhythm. Established electrogram criteria were used to identify the presence of structural alterations. RESULTS: VF occurred spontaneously in 3 patients and was induced in 16, whereas VF was noninducible in 5. VF mapping demonstrated reentrant and focal activities (87% versus 13%, respectively) in all. The activities were dominant in one ventricle in 9 patients, whereas they had biventricular distribution in others. During sinus rhythm areas of abnormal electrograms were identified in 15/24 patients (62.5%) revealing localized structural alterations: in the right ventricle in 11, the left ventricle in 1, and both in 3. They covered a limited surface (13±6 cm2) representing 5±3% of the total surface and were recorded predominantly on the epicardium. Seventy-six percent of these areas were colocated with VF drivers (P<0.001). In the 9 patients without structural alteration, we observed a high incidence of Purkinje triggers (7/9 versus 4/15, P=0.033). Catheter ablation resulted in arrhythmia-free outcome in 15/18 patients at 17±11 months follow-up. CONCLUSIONS: This study shows that localized structural alterations underlie a significant subset of previously unexplained sudden cardiac death. In the other subset, Purkinje electrical pathology seems as a dominant mechanism.


Subject(s)
Action Potentials , Death, Sudden, Cardiac/etiology , Electrophysiologic Techniques, Cardiac , Heart Rate , Purkinje Fibers/physiopathology , Ventricular Fibrillation/diagnosis , Adolescent , Adult , Cardiac Pacing, Artificial , Catheter Ablation , Cause of Death , Death, Sudden, Cardiac/prevention & control , Female , Humans , Male , Predictive Value of Tests , Progression-Free Survival , Purkinje Fibers/surgery , Risk Factors , Time Factors , Ventricular Fibrillation/complications , Ventricular Fibrillation/physiopathology , Ventricular Fibrillation/prevention & control , Young Adult
20.
Front Physiol ; 9: 370, 2018.
Article in English | MEDLINE | ID: mdl-29731720

ABSTRACT

Realistic electrocardiogram (ECG) simulation with numerical models is important for research linking cellular and molecular physiology to clinically observable signals, and crucial for patient tailoring of numerical heart models. However, ECG simulation with a realistic torso model is computationally much harder than simulation of cardiac activity itself, so that many studies with sophisticated heart models have resorted to crude approximations of the ECG. This paper shows how the classical concept of electrocardiographic lead fields can be used for an ECG simulation method that matches the realism of modern heart models. The accuracy and resource requirements were compared to those of a full-torso solution for the potential and scaling was tested up to 14,336 cores with a heart model consisting of 11 million nodes. Reference ECGs were computed on a 3.3 billion-node heart-torso mesh at 0.2 mm resolution. The results show that the lead-field method is more efficient than a full-torso solution when the number of simulated samples is larger than the number of computed ECG leads. While the initial computation of the lead fields remains a hard and poorly scalable problem, the ECG computation itself scales almost perfectly and, even for several hundreds of ECG leads, takes much less time than the underlying simulation of cardiac activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...