Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-24215551

ABSTRACT

Foods may be irradiated in their final packaging and this process may affect the composition of the packaging and in turn affect the migration of substances into food. Headspace and liquid injection GC-MS and HPLC with time-of-flight MS have been used to identify and estimate levels of radiolytic products in irradiated finished plastic packaging materials. Fifteen retail packaging materials were studied. Investigations were carried out into the effect of different irradiation types (gamma and electron beam), irradiation doses (1, 3, 7 and 10 kGy) and dose rates (5 kGy s(-1) for electron beam and 0.4 and 1.85 kGy h(-1) for gamma) on the radiolytic products. Any differences seen in comparing the two ionising radiation types were attributed largely to the very different dose rates; for electron beam a 10 kGy dose was delivered in just 2 s whereas using gamma it took 5.4 h. Differences were also seen when comparing the same samples irradiated at different doses. Some substances were not affected by irradiation, others decreased in concentration and others were formed upon increasing doses of irradiation. These results confirm that irradiation-induced changes do occur in substances with the potential to migrate and that the safety of the finished packaging material following irradiation should be assessed.


Subject(s)
Food Contamination/analysis , Food Irradiation/adverse effects , Food Packaging , Chromatography, High Pressure Liquid , Coloring Agents/radiation effects , Dose-Response Relationship, Radiation , Electrons/adverse effects , Gamma Rays/adverse effects , Gas Chromatography-Mass Spectrometry , Hazard Analysis and Critical Control Points/methods , Humans , Ink , Spectrometry, Mass, Electrospray Ionization
2.
Article in English | MEDLINE | ID: mdl-20486003

ABSTRACT

Fifty melamine-ware articles were tested for the migration of formaldehyde - with hexamethylenetetramine (HMTA) expressed as formaldehyde - to see whether the total specific migration limit (SML(T)) was being observed. The SML(T), given in European Commission Directive 2002/72/EC as amended, is 15 mg kg(-1). Fourier transform-infrared (FT-IR) spectroscopy was carried out on the articles to confirm the plastic type. Articles were exposed to the food simulant 3% (w/v) aqueous acetic acid under conditions representing their worst foreseeable use. Formaldehyde and HMTA in food simulants were determined by a spectrophotometric derivatization procedure. Positive samples were confirmed by a second spectrophotometric procedure using an alternative derivatization agent. As all products purchased were intended for repeat use, three sequential exposures to the simulant were carried out. Formaldehyde was detected in the simulant exposed to 43 samples. Most of the levels found were well below the limits set in law such that 84% of the samples tested were compliant. However, eight samples had formaldehyde levels that were clearly above the legal maximum at six to 65 times the SML(T).


Subject(s)
Food Contamination/analysis , Formaldehyde/chemistry , Plastics/chemistry , Color , Cooking and Eating Utensils/standards , Equipment Design , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL
...