Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
J Fish Biol ; 104(6): 1990-2007, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38561641

ABSTRACT

The lamprey genus Geotria Gray, 1851 currently includes only two species: G. australis and G. macrostoma. However, taxonomic relationships within the genus have traditionally been ambiguous and difficult to establish due to the extreme changes in morphology, dentition, and coloration that lampreys undergo during their life cycles, particularly during upstream migration and sexual maturation. Consequently, several lamprey specimens held in museum collections have remained unidentified, especially those from Argentina. In this study, a series of morphometric characters were subjected to discriminant function analysis (DFA) to identify the lamprey species collected during 1867-2004 from the de la Plata River and Patagonia. These specimens are housed at the Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" in Buenos Aires, the Museo de Historia Natural de Montevideo, and the Naturhistoriska riksmuseet in Stockholm. Based on the proportions of the length of the oral disc, prebranchial, and pre-caudal body regions, and the depth of the trunk, DFA provided conclusive evidence that the specimens corresponded to the recently revalidated G. macrostoma (Burmeister, 1868), which was originally incorrectly named as Petromyzon macrostomus Burmeister, 1868, Exomegas macrostomus (Berg, 1899), Geotria chilensis (Berg, 1895), and Geotria macrostoma f. gallegensis Smitt, 1901, as well as other nontype museum individuals of uncertain taxonomic status. The identifications of these long-preserved museum specimens provided key information on the historical geographic range of Argentinian lampreys and suggest that the disappearance of the species reported from northern localities (the Pampean Region) can be attributed to the degradation of their critical habitats, primarily caused by anthropogenic impact and climate change.


Subject(s)
Lampreys , Animals , Lampreys/anatomy & histology , Argentina , Discriminant Analysis , Museums , Animal Distribution
2.
Mar Pollut Bull ; 167: 112330, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33932640

ABSTRACT

The characteristics of detached macroalgae (drift) in nearby highly eutrophic and mesotrophic estuaries in south-western Australia are compared to elucidate the magnitude and types of changes that occur in macroalgal drift when estuaries receive excessive nutrient input. Drift characteristics in the large basins of the microtidal, eutrophic Peel-Harvey and mesotrophic Swan-Canning, which is not subjected to large nutrient inputs directly from agricultural land, differed markedly. Biomass (dry weight) in mesotrophic estuary was dominated by rhodophytes (92%), particularly Laurencia and Hypnea, and in eutrophic estuary by opportunistic chlorophytes (68%), especially Chaetomorpha and Ulva. Prevalence and biomass of drift were far greater in the eutrophic estuary, particularly during summer and autumn when macroalgal growth rose sharply. Macroalgal biomass in the eutrophic estuary was positively related to salinity. These results facilitate predictions of how climatic and other anthropogenic changes influence extent of macroalgal growth and thus change the estuarine environment.


Subject(s)
Estuaries , Eutrophication , Biomass , South Australia , Western Australia
3.
J Comp Neurol ; 529(9): 2265-2282, 2021 06.
Article in English | MEDLINE | ID: mdl-33336375

ABSTRACT

Lampreys are extant members of the agnathan (jawless) vertebrates that diverged ~500 million years ago, during a critical stage of vertebrate evolution when image-forming eyes first emerged. Among lamprey species assessed thus far, the retina of the southern hemisphere pouched lamprey, Geotria australis, is unique, in that it possesses morphologically distinct photoreceptors and expresses five visual photopigments. This study focused on determining the number of different photoreceptors present in the retina of G. australis and whether each cell type expresses a single opsin class. Five photoreceptor subtypes were identified based on ultrastructure and differential expression of one of each of the five different visual opsin classes (lws, sws1, sws2, rh1, and rh2) known to be expressed in the retina. This suggests, therefore, that the retina of G. australis possesses five spectrally and morphologically distinct photoreceptors, with the potential for complex color vision. Each photoreceptor subtype was shown to have a specific spatial distribution in the retina, which is potentially associated with changes in spectral radiance across different lines of sight. These results suggest that there have been strong selection pressures for G. australis to maintain broad spectral sensitivity for the brightly lit surface waters that this species inhabits during its marine phase. These findings provide important insights into the functional anatomy of the early vertebrate retina and the selection pressures that may have led to the evolution of complex color vision.


Subject(s)
Cone Opsins/biosynthesis , Cone Opsins/ultrastructure , Photoreceptor Cells, Vertebrate/metabolism , Photoreceptor Cells, Vertebrate/ultrastructure , Rod Opsins/biosynthesis , Rod Opsins/ultrastructure , Animals , Cone Opsins/analysis , Fluorescent Dyes/analysis , Lampreys , Photoreceptor Cells, Vertebrate/chemistry , Rod Opsins/analysis
4.
J Comp Physiol B ; 190(1): 35-47, 2020 01.
Article in English | MEDLINE | ID: mdl-31858228

ABSTRACT

This paper has integrated new and past data to elucidate how lipid, protein and glycogen metabolism contribute to generating the ATP required by the southern hemisphere lamprey Geotria australis during its ~ 13-15 months, non-trophic upstream spawning migration. Energy is required for maintenance, swimming, the development of gonads and secondary sexual characters and spawning and post-spawning activities. Plasma and muscle metabolites were measured in animals subjected to an exercise-recovery regime at the commencement and completion of the spawning run. The present study demonstrated the following. At all stages of the migration, plasma glucose and glycerol concentrations increased during exercise and then declined, whereas plasma FFAs exhibited the reverse trend. During exercise and recovery, alanine declined and ammonia increased in the plasma of early migrants, while the opposite occurred in mature males. Following exercise, muscle alanine rose and then declined in early migrants, but declined and then rose in mature males. The composite data emphasise that, while the same catabolic processes are employed by both sexes early in the migration, when animals are immature, they differ markedly between the sexes as they mature and then spawn, reflecting their different demands. Energy is supplied predominantly via anaerobic metabolism in early migrants, but by anaerobic and aerobic metabolism in prespawning females and by aerobic metabolism in mature males and spent females. Although proteolysis is limited early in the migration, it is employed extensively during maturation and particularly by females, which undergo a substantial reduction in length in the lead-up to spawning.


Subject(s)
Lampreys/metabolism , Lipid Metabolism/physiology , Physical Conditioning, Animal , Proteins/metabolism , Animal Migration/physiology , Animals , Energy Metabolism , Female , Glycerol/metabolism , Male , Muscles/metabolism , Proteolysis , Reproduction/physiology , Swimming
5.
Mar Pollut Bull ; 142: 433-451, 2019 May.
Article in English | MEDLINE | ID: mdl-31232322

ABSTRACT

Mesozooplankton was sampled seasonally in a large microtidal estuary (Peel-Harvey) suffering from massive macroalgal growths and cyanobacterial blooms. Comparisons with other estuaries indicate that eutrophication led to copepod abundance declining and macroalgal-associated species increasing. Mesozooplankton species are almost exclusively autochthonous, i.e. spend entire life cycle within the estuary. Meroplanktonic species are virtually absent because main benthic macroinvertebrate species undergo direct benthic rather than planktotrophic development. There are also few abundant holoplanktonic species. Most species are tychoplanktonic, i.e. benthic and transported into plankton through physical disturbance of sediment. Species number, concentration and Simpson's Index are greater during night than day. Annual cyclical changes in species composition are related closely to changes in salinity. At the most degraded site, nematode concentrations were high and the species number and concentration changed markedly during extreme eutrophication, when oxygen concentrations were low, disrupting annual cyclical changes in species composition.


Subject(s)
Copepoda/physiology , Estuaries , Eutrophication , Zooplankton/physiology , Animals , Australia , Cyanobacteria/physiology , Environmental Monitoring , Population Density , Salinity , Seasons
6.
Mar Pollut Bull ; 135: 41-46, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30301052

ABSTRACT

Not all estuaries are equally susceptible to anthropogenic perturbation. Microtidal estuaries with long residence times are intrinsically less robust than well-flushed macrotidal estuaries, facilitating the accumulation of contaminants. This promotes development of blooms of non-toxic and toxic phytoplankton, and hypoxia and anoxia may occur in deeper sections of the typically stratified water column. In Mediterranean and arid climates, high temperatures and low and/or seasonal rainfall can result in marked hypersalinity. Thus, any increase in anthropogenic perturbation will further decrease the health of a system in which the biota already experiences natural stress. Microtidal estuaries are also more susceptible to climate change, the detrimental longer-term effects of which are becoming manifestly obvious. Numerous attempts have been made to develop novel solutions to problems caused by eutrophication, phytoplankton blooms, hypoxia and hypersalinity, which have met with various levels of success, but the need for such measures and effective legislation is increasingly critical.


Subject(s)
Climate Change , Conservation of Water Resources/methods , Estuaries , Water Pollution , Animals , Biota , Eutrophication , Phytoplankton/growth & development , Salinity
7.
Ecol Evol ; 8(14): 7111-7130, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30073071

ABSTRACT

Understanding challenges posed by climate change to estuaries and their faunas remains a high priority for managing these systems and their communities. Freshwater discharge into a range of estuary types in south-western Australia between 1990 and 2015 is shown to be related to rainfall. This largely accounts for decreases in discharge in this microtidal region being more pronounced on the west coast than south coast, where rainfall decline was less. Results of an oxygen-balance model imply that, as demonstrated by empirical data for the Swan River Estuary, declines in discharge into a range of estuary types would be accompanied by increases in the extent of hypoxia. In 2013-15, growth and body condition of the teleost Acanthopagrus butcheri varied markedly among three permanently open, one intermittently-open, one seasonally-closed and one normally-closed estuary, with average time taken by females to reach the minimum legal length (MLL) of 250 mm ranging from 3.6 to 17.7 years. It is proposed that, in a given restricted period, these inter-estuary variations in biological characteristics are related more to differences in factors, such as food resources and density, than to temperature and salinity. The biological characteristics of A. butcheri in the four estuaries, for which there are historical data, changed markedly between 1993-96 and 2013-15. Growth of both sexes, and also body condition in all but the normally-closed estuary, declined, with females taking between 1.7 and 2.9 times longer to attain the MLL. Irrespective of period, body condition, and growth are positively related. Age at maturity typically increased between periods, but length at maturity declined only in the estuary in which growth was greatest. The plasticity of the biological characteristics of A. butcheri, allied with confinement to its natal estuary and ability to tolerate a wide range of environmental conditions, makes this sparid and comparable species excellent subjects for assessing estuarine "health."

8.
Brain Behav Evol ; 89(1): 33-47, 2017.
Article in English | MEDLINE | ID: mdl-28214856

ABSTRACT

Lampreys and hagfishes are the sole surviving representatives of the early agnathan (jawless) stage in vertebrate evolution, which has previously been regarded as the least encephalized group of all vertebrates. Very little is known, however, about the extent of interspecific variation in relative brain size in these fishes, as previous studies have focused on only a few species, even though lampreys exhibit a variety of life history traits. While some species are parasitic as adults, with varying feeding behaviors, others (nonparasitic species) do not feed after completing their macrophagous freshwater larval phase. In addition, some parasitic species remain in freshwater, while others undergo an anadromous migration. On the basis of data for postmetamorphic individuals representing approximately 40% of all lamprey species, with representatives from each of the three families, the aforementioned differences in life history traits are reflected in variations in relative brain size. Across all lampreys, brain mass increases with body mass with a scaling factor or slope (α) of 0.35, which is less than those calculated for different groups of gnathostomatous (jawed) vertebrates (α = 0.43-0.62). When parasitic and nonparasitic species are analyzed separately, with phylogeny taken into account, the scaling factors of both groups (parasitic α = 0.43, nonparasitic α = 0.45) approach those of gnathostomes. The relative brain size in fully grown adults of parasitic species is, however, less than that of the adults of nonparasitic species, paralleling differences between fully grown adults and recently metamorphosed individuals of anadromous species. The average degree of encephalization is found in anadromous parasitic lampreys and might thus represent the ancestral condition for extant lampreys. These results suggest that the degree of encephalization in lampreys varies according to both life history traits and phylogenetic relationships.


Subject(s)
Biological Evolution , Brain/anatomy & histology , Feeding Behavior/physiology , Hagfishes , Lampreys , Phylogeny , Animals , Body Size , Hagfishes/anatomy & histology , Hagfishes/physiology , Lampreys/anatomy & histology , Lampreys/physiology , Organ Size
9.
J Exp Biol ; 220(Pt 7): 1245-1255, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28108670

ABSTRACT

Lampreys and hagfishes are the sole extant representatives of the early agnathan (jawless) vertebrates. We compared retinal function of fully metamorphosed, immature Mordacia mordax (which are about to commence parasitic feeding) with those of sexually mature individuals of its non-parasitic derivative Mpraecox We focused on elucidating the retinal adaptations to dim-light environments in these nocturnally active lampreys, using electroretinography to determine the temporal resolution (flicker fusion frequency, FFF) and temporal contrast sensitivity of enucleated eyecups at different temperatures and light intensities. FFF was significantly affected by temperature and light intensity. Critical flicker fusion frequency (cFFF, the highest FFF recorded) of M. praecox and M. mordax increased from 15.1 and 21.8 Hz at 9°C to 31.1 and 36.9 Hz at 24°C, respectively. Contrast sensitivity of both species increased by an order of magnitude between 9 and 24°C, but remained comparatively constant across all light intensities. Although FFF values for Mordacia spp. are relatively low, retinal responses showed a particularly high contrast sensitivity of 625 in M. praecox and 710 in M. mordax at 24°C. This suggests selective pressures favour low temporal resolution and high contrast sensitivity in both species, thereby enhancing the capture of photons and increasing sensitivity in their light-limited environments. FFF indicated all retinal photoreceptors exhibit the same temporal response. Although the slow response kinetics (i.e. low FFF) and saturation of the response at bright light intensities characterise the photoreceptors of both species as rod-like, it is unusual for such a photoreceptor to be functional under scotopic and photopic conditions.


Subject(s)
Contrast Sensitivity , Lampreys/physiology , Animals , Female , Flicker Fusion , Light , Retina/physiology , Vision, Ocular
10.
Front Neurosci ; 9: 251, 2015.
Article in English | MEDLINE | ID: mdl-26283894

ABSTRACT

Very few studies have described brain scaling in vertebrates throughout ontogeny and none in lampreys, one of the two surviving groups of the early agnathan (jawless) stage in vertebrate evolution. The life cycle of anadromous parasitic lampreys comprises two divergent trophic phases, firstly filter-feeding as larvae in freshwater and secondly parasitism as adults in the sea, with the transition marked by a radical metamorphosis. We characterized the growth of the brain during the life cycle of the pouched lamprey Geotria australis, an anadromous parasitic lamprey, focusing on the scaling between brain and body during ontogeny and testing the hypothesis that the vast transitions in behavior and environment are reflected in differences in the scaling and relative size of the major brain subdivisions throughout life. The body and brain mass and the volume of six brain structures of G. australis, representing six points of the life cycle, were recorded, ranging from the early larval stage to the final stage of spawning and death. Brain mass does not increase linearly with body mass during the ontogeny of G. australis. During metamorphosis, brain mass increases markedly, even though the body mass does not increase, reflecting an overall growth of the brain, with particularly large increases in the volume of the optic tectum and other visual areas of the brain and, to a lesser extent, the olfactory bulbs. These results are consistent with the conclusions that ammocoetes rely predominantly on non-visual and chemosensory signals, while adults rely on both visual and olfactory cues.

11.
J Comp Neurol ; 522(4): 750-71, 2014 Mar.
Article in English | MEDLINE | ID: mdl-23897624

ABSTRACT

Lampreys are one of two extant representatives of the earliest group of vertebrates, the agnathans or jawless fishes. The single species of the southern hemisphere lamprey family Geotriidae, Geotria australis, possesses the potential for pentachromatic color discrimination opposed to the mono- or dichromacy found in other lampreys. However, little is known of the retinal ganglion cell types that contribute to visual processing in G. australis. A quantitative morphological approach was used to distinguish and describe retinal ganglion cell types in G. australis. The morphology of retinal ganglion cells was revealed by retrograde biocytin labeling from the optic disc. Cells were digitally reconstructed, and somatic area and position and dendritic field size, density, tortuosity, and stratification were subjected to quantitative morphometric analyses. Cluster analysis, in conjunction with similarity profile analysis (SIMPROF), statistically identified five discrete monostratified retinal ganglion cell types, one of which may comprise two subtypes. Two bistratified types were identified separately, including a biplexiform and a bistratified subtype. The use of cluster analysis with SIMPROF provided a robust statistical technique for objectively identifying cell types whose characteristics were similar and significantly different from those of other types and thus provides an objective resolution of the problems posed by "lumpers vs. splitters" when designating cell types. The diversity of retinal ganglion cells suggests that visual information in the lamprey G. australis is processed in parallel streams, as in gnathostomes. These findings, together with the results of previous studies, indicate that the visual system of the lamprey G. australis represents the upper limit of visual complexity in extant agnathans.


Subject(s)
Lampreys/anatomy & histology , Retina/cytology , Retinal Ganglion Cells/classification , Animals , Cluster Analysis , Dendrites/ultrastructure , Lysine/analogs & derivatives , Lysine/metabolism , Retinal Ganglion Cells/cytology , Retinal Ganglion Cells/metabolism , Visual Pathways/cytology , Visual Pathways/ultrastructure
12.
PLoS One ; 8(3): e58406, 2013.
Article in English | MEDLINE | ID: mdl-23516473

ABSTRACT

Lampreys are one of the two surviving groups of the agnathan (jawless) stages in vertebrate evolution and are thus ideal candidates for elucidating the evolution of visual systems. This study investigated the retinal amino acid neurochemistry of the southern hemisphere lamprey Geotria australis during the downstream migration of the young, recently-metamorphosed juveniles to the sea and during the upstream migration of the fully-grown and sexually-maturing adults to their spawning areas. Glutamate and taurine were distributed throughout the retina, whilst GABA and glycine were confined to neurons of the inner retina matching patterns seen in most other vertebrates. Glutamine and aspartate immunoreactivity was closely matched to Müller cell morphology. Between the migratory phases, few differences were observed in the distribution of major neurotransmitters i.e. glutamate, GABA and glycine, but changes in amino acids associated with retinal metabolism i.e. glutamine and aspartate, were evident. Taurine immunoreactivity was mostly conserved between migrant stages, consistent with its role in primary cell functions such as osmoregulation. Further investigation of glutamate signalling using the probe agmatine (AGB) to map cation channel permeability revealed entry of AGB into photoreceptors and horizontal cells followed by accumulation in inner retinal neurons. Similarities in AGB profiles between upstream and downstream migrant of G. australis confirmed the conservation of glutamate neurotransmission. Finally, calcium binding proteins, calbindin and calretinin were localized to the inner retina whilst recoverin was localized to photoreceptors. Overall, conservation of major amino acid neurotransmitters and calcium-associated proteins in the lamprey retina confirms these elements as essential features of the vertebrate visual system. On the other hand, metabolic elements of the retina such as neurotransmitter precursor amino acids and Müller cells are more sensitive to environmental changes associated with migration.


Subject(s)
Amino Acids/metabolism , Lampreys/metabolism , Retina/metabolism , Animals , Calcium-Binding Proteins/metabolism , Ion Channels/metabolism , Permeability , Retina/cytology , Retinal Neurons/metabolism
13.
J Electron Microsc (Tokyo) ; 58(4): 253-60, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19244271

ABSTRACT

Three kinds of epithelial cells comprise the surfaces of the gill filaments and lamellae of larval lampreys (ammocoetes): ammocoete mitochondria-rich cells (AMRCs), intercalated mitochondria-rich cells (IMRCs) and pavement cells. Selected characteristics of these cell types in ammocoetes of Geotria australis held in distilled water and in 10% sea water were compared using an ultrastructural stereological approach to determine which of those cell type(s) respond to exposure to an ion-deficient environment in a manner that indicates that they are involved in ion uptake. Particular focus was placed on the enigmatic AMRC, which comprises ca 60% of the cells and contains numerous mitochondria. The mean percentage contributions of both AMRCs and pavement cells to the total number of the three cell types in the two experimental groups were not significantly different, whereas that of IMRCs was >7% in distilled water and <1% in 10% sea water (P < 0.001). Furthermore, the mean apical surface areas of neither AMRCs nor pavement cells differed significantly between the two experimental groups, whereas that of IMRCs was nearly 3-fold greater in distilled water than in 10% sea water. The volume densities and size of mitochondria in AMRCs did not differ between the two exposure regimes. The above comparisons provide no indications that the uptake of Na(+) and Cl(-) in the gill epithelium of ammocoetes involves either the AMRC or pavement cell but, when considered in conjunction with data on ion-transporting cells in other vertebrates, they are consistent with the conclusion that the IMRC plays a crucial role in this process.


Subject(s)
Epithelial Cells/metabolism , Epithelial Cells/ultrastructure , Fresh Water , Gills/cytology , Ions/metabolism , Lampreys/physiology , Animals , Chlorides/metabolism , Lampreys/anatomy & histology , Larva , Mitochondria/metabolism , Mitochondria/ultrastructure , Sodium/metabolism , Water-Electrolyte Balance
14.
FASEB J ; 21(11): 2713-24, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17463225

ABSTRACT

Lampreys are one of the two surviving groups of jawless vertebrates, whose ancestors arose more than 540 million years ago. Some species, such as Geotria australis, are anadromous, commencing life as ammocoetes in rivers, migrating downstream to the sea, and migrating back into rivers to spawn. Five photoreceptor types and five retinal cone opsin genes (LWS, SWS1, SWS2, RhA, and RhB) have previously been identified in G. australis. This implies that the ancestral vertebrates possessed photopic or cone-based vision with the potential for pentachromacy. Changes in the morphology of photoreceptors and their spectral sensitivity are encountered during differing aquatic phases of the lamprey lifecycle. To understand the molecular basis for these changes, we characterized the visual pigments and measured the relative levels of opsin expression over two lifecycle phases that are accompanied by contrasting ambient light environments. By expressing recombinant opsins in vitro, we show that SWS1, SWS2, RhA, and RhB visual pigments possess lambda(max) values of 359, 439, 497, and 492 nm respectively. For the LWS visual pigment, we predict a lambda(max) value of 560 nm based on key spectral tuning sites in other vertebrate LWS opsins. Quantitative reverse transcriptase-polymerase chain reaction reveals that the retinal opsin genes of G. australis are differentially regulated such that the visual system switches from a broad sensitivity across a wide spectral range to a much narrower sensitivity centered around 490-500 nm on transition from marine to riverine conditions. These quantitative changes in visual pigment expression throughout the lifecycle may directly result from changes in the lighting conditions of the surrounding milieu.


Subject(s)
Gene Expression Regulation/physiology , Lampreys/genetics , Retina/metabolism , Rod Opsins/genetics , Amino Acid Sequence , Animals , DNA Primers , Evolution, Molecular , Lampreys/metabolism , Models, Molecular , Molecular Conformation , Molecular Sequence Data , Phylogeny , Reverse Transcriptase Polymerase Chain Reaction , Rod Opsins/chemistry , Rod Opsins/metabolism
15.
Dev Genes Evol ; 215(11): 553-63, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16034601

ABSTRACT

This study explored the distribution of parathyroid hormone-related protein (PTHrP) and its mRNA in tissues of the lamprey Geotria australis, a representative of one of the two surviving groups of an early and jawless stage in vertebrate evolution. For this purpose, antibodies to N-terminal and mid-molecule human PTHrP were used to determine the locations of the antigen. Sites of mRNA production were demonstrated by in situ hybridisation with a digoxigenin-labelled riboprobe to exon VI of the human PTHrP gene. The results revealed that antigen and its mRNA were widely distributed among similar sites of tissue localisation to those described for mammalian and avian species. However, some novel sites of localisation, such as in the gill and notochord, were also found. Some differences in PTHrP localisation were noted among individuals at different intervals of the life cycle, indicating that the distributions of PTHrP, and possibly its roles, change with the stage of development in this species. The widespread tissue distribution in G. australis implies diverse physiological roles for this protein. The presence of PTHrP in the lamprey, a representative of a group of vertebrates, which apparently evolved over 540 million years ago, strongly suggests that it is a protein of ancient origin. In addition, the successful use of antibodies and probes based on the human sequence in the lamprey also provides evidence that the PTHrP molecule may have been conserved from lampreys through to humans.


Subject(s)
Evolution, Molecular , Gene Expression Regulation, Developmental/physiology , Lampreys/physiology , Parathyroid Hormone-Related Protein/biosynthesis , Parathyroid Hormone-Related Protein/genetics , Animals , Humans , Immunohistochemistry , Lampreys/anatomy & histology , Lampreys/embryology , Lampreys/genetics , Male , Organ Specificity/genetics , Parathyroid Hormone-Related Protein/chemistry , RNA, Messenger/biosynthesis
16.
J Exp Biol ; 207(Pt 20): 3447-62, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15339941

ABSTRACT

Lampreys, one of the only two surviving groups of agnathan (jawless) vertebrates, contain several anadromous species that, during their life cycle, thus migrate from fresh to seawater and back to freshwater. Lampreys have independently evolved the same overall osmoregulatory mechanisms as the gnathostomatous (jawed) and distantly related teleost fishes. Lamprey gills thus likewise play a central role in taking up and secreting monovalent ions. However, the ultrastructural characteristics and distribution of their epithelial cell types [ammocoete mitochondria-rich (MR) cell, intercalated MR cell, chloride cell and pavement cell] differ in several respects from those of teleosts. The ultrastructural characteristics of these cells are distinctive and closely resemble those of certain ion-transporting epithelia in other vertebrates, for which the function has been determined. The data on each cell type, together with the stage in the life cycle at which it is found, i.e. whether in fresh or seawater, enable the following proposals to be made regarding the ways in which lampreys use their gill epithelial cells for osmoregulating in hypo- and hypertonic environments. In freshwater, the intercalated MR cell takes up Cl- and secretes H+, thereby facilitating the uptake of Na+ through pavement cells. In seawater, the chloride cell uses a secondarily active transcellular transport of Cl- to provide the driving force for the passive movement of Na+ through leaky paracellular pathways between these cells.


Subject(s)
Gills/cytology , Lampreys/anatomy & histology , Water-Electrolyte Balance/physiology , Animals , Chlorides/metabolism , Epithelium/ultrastructure , Fresh Water , Lampreys/physiology , Larva/anatomy & histology , Microscopy, Electron, Scanning , Mitochondria/metabolism , Seawater , Sodium/metabolism
17.
Vis Neurosci ; 21(5): 765-73, 2004.
Article in English | MEDLINE | ID: mdl-15683562

ABSTRACT

The dorso-laterally located eyes of the southern hemisphere lamprey Mordacia mordax (Agnatha) contain a single morphological type of retinal photoreceptor, which possesses ultrastructural characteristics of both rods and cones. This photoreceptor has a large refractile ellipsosome in the inner segment and a long cylindrical outer segment surrounded by a retinal pigment epithelium that contains two types of tapetal reflectors. The photoreceptors form a hexagonal array and attain their peak density (33,200 receptors/mm2) in the ventro-temporal retina. Using the size and spacing of the photoreceptors and direct measures of aperture size and eye dimensions, the peak spatial resolving power and optical sensitivity are estimated to be 1.7 cycles deg-1 (minimum separable angle of 34'7'') and 0.64 microm2 steradian (white light) and 1.38 microm2 steradian (preferred wavelength or lambdamax), respectively. Microspectrophotometry reveals that the visual pigment located within the outer segment is a rhodopsin with a wavelength of maximum absorbance (lambdamax) at 514 nm. The ellipsosome has very low absorptance (<0.05) across the measured spectrum (350-750 nm) and probably does not act as a spectral filter. In contrast to all other lampreys studied, the optimized receptor packing, the large width of the ellipsosome-bearing inner segment, together with the presence of a retinal tapetum in the photophobic Mordacia, all represent adaptations for low light vision and optimizing photon capture.


Subject(s)
Lampreys/physiology , Light , Photoreceptor Cells, Vertebrate/physiology , Rhodopsin/physiology , Vision, Ocular/physiology , Animals , Australia , Microspectrophotometry , Ocular Physiological Phenomena , Photoreceptor Cells, Vertebrate/cytology , Rhodopsin/chemistry , Sensory Thresholds
19.
Vis Neurosci ; 20(2): 119-30, 2003.
Article in English | MEDLINE | ID: mdl-12916734

ABSTRACT

The morphology and spectral absorption characteristics of the retinal photoreceptors in the southern hemisphere lamprey Geotria australis (Agnatha) were studied using light and electron microscopy and microspectrophotometry. The retinae of both downstream and upstream migrants of Geotria contained two types of cone photoreceptor and one type of rod photoreceptor. Visual pigments contained in the outer segments of these three photoreceptor types had absorbance spectra typical of porphyropsins and with wavelengths of maximum absorbance (downstream/upstream) at 610/616 nm (long-wavelength-sensitive cone, LWS), 515/515 nm (medium-wavelength-sensitive cone, MWS), and 506/500 nm (medium-wavelength-sensitive rod). A "yellow" photostable pigment was present in the myoid region of all three types of photoreceptor in the downstream migrant. The same short-wavelength-absorbing pigment, which prevents photostimulation of the beta band of the visual pigment in the outer segment, was present in the rods and LWS cones of the upstream migrant, but was replaced by a large transparent ellipsosome in the MWS cones. Using microspectrophotometric and anatomical data, the quantal spectral sensitivity of each photoreceptor type was calculated. Our results provide the first evidence of a jawless vertebrate, represented today solely by the lampreys and hagfishes, with two morphologically and physiologically distinct types of cone photoreceptors, in addition to a rod-like photoreceptor containing a colored filter (a cone-like characteristic). In contrast, all other lampreys studied thus far have either (1) one type of cone and one type of rod, or (2) a single type of rod-like photoreceptor. The evolution or retention of a second type of cone in adult Geotria is presumably an adaptation to life in the brightly lit surface waters of the Southern Ocean, where this species lives during the marine phase of its life cycle. The functional significance of the unique visual system of Geotria is discussed in relation to its life cycle and the potential for color vision.


Subject(s)
Color Perception/physiology , Color , Lampreys/physiology , Light , Photoreceptor Cells/physiology , Photoreceptor Cells/ultrastructure , Absorption , Animals , Microscopy, Electron , Retinal Cone Photoreceptor Cells/radiation effects , Spectrophotometry
SELECTION OF CITATIONS
SEARCH DETAIL
...