Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 14: 1244533, 2023.
Article in English | MEDLINE | ID: mdl-38414709

ABSTRACT

Recently emerged S. Infantis strains carrying resistance to several commonly used antimicrobials have been reported from different parts of the globe, causing human cases of salmonellosis and with occurrence reported predominantly in broiler chickens. Here, we performed phylogenetic and genetic clustering analyses to describe the population structure of 417 S. Infantis originating from multiple European countries and the Americas collected between 1985 and 2019. Of these, 171 were collected from 56 distinct premises located in England and Wales (E/W) between 2009 and 2019, including isolates linked to incursions of multidrug-resistant (MDR) strains from Europe associated with imported poultry meat. The analysis facilitated the comparison of isolates from different E/W sources with isolates originating from other countries. There was a high degree of congruency between the outputs of different types of population structure analyses revealing that the E/W and central European (Germany, Hungary, and Poland) isolates formed several disparate groups, which were distinct from the cluster relating to the United States (USA) and Ecuador/Peru, but that isolates from Brazil were closely related to the E/W and the central European isolates. Nearly half of the analysed strains/genomes (194/417) harboured the IncFIB(pN55391) replicon typical of the "parasitic" pESI-like megaplasmid found in diverse strains of S. Infantis. The isolates that contained the IncFIB(pN55391) replicon clustered together, despite originating from different parts of the globe. This outcome was corroborated by the time-measured phylogeny, which indicated that the initial acquisition of IncFIB(pN55391) likely occurred in Europe in the late 1980s, with a single introduction of IncFIB(pN55391)-carrying S. Infantis to the Americas several years later. Most of the antimicrobial resistance (AMR) genes were identified in isolates that harboured one or more different plasmids, but based on the short-read assemblies, only a minority of the resistance genes found in these isolates were identified as being associated with the detected plasmids, whereas the hybrid assemblies comprising the short and long reads demonstrated that the majority of the identified AMR genes were associated with IncFIB(pN55391) and other detected plasmid replicon types. This finding underlies the importance of applying appropriate methodologies to investigate associations of AMR genes with bacterial plasmids.

2.
Anal Chim Acta ; 1184: 338985, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34625247

ABSTRACT

Paper microfluidic or lateral flow devices have found many applications, especially in medical diagnostics. Their low cost and ease of use makes them particularly valuable in resource-limited and point-of-care applications. However, the process of developing new paper microfluidic devices is slowed by the need to find optimal values for their various design parameters, which determine the overall size and fluid volume requirements of the device. Often, researchers must design and test several different versions of a device to find a combination of parameters that functions as intended. To accelerate the development of new paper microfluidics, we developed a software framework that automatically designs custom paper microfluidic devices for a given application. Once the user specifies the desired device parameters, the software generates printable image files of the resulting devices, ready to output to a conventional wax ink color printer and test. As a proof-of-concept, we used our software to automatically design 51 different paper microfluidic devices we needed to create a functional lateral flow assay that detects protein and glucose in urine. These designs took only a few seconds to generate and were used in 120 lab experiments we performed in 16 h in the lab. Thus, with the help of our software framework, we went from an idea to a functional device in just two work days. By accelerating device development and enabling researchers without microfluidics experience to create custom devices, our software can help spread paper microfluidic technology to important new application areas.


Subject(s)
Microfluidics , Software , Automation , Lab-On-A-Chip Devices , Point-of-Care Systems
3.
Curr Biol ; 31(20): 4667-4674.e6, 2021 10 25.
Article in English | MEDLINE | ID: mdl-34478643

ABSTRACT

In most vertebrates, the demand for glucose as the primary substrate for cellular respiration is met by the breakdown of complex carbohydrates, or energy is obtained by protein and lipid catabolism. In contrast, a few bat and bird species have convergently evolved to subsist on nectar, a sugar-rich mixture of glucose, fructose, and sucrose.1-4 How these nectar-feeders have adapted to cope with life-long high sugar intake while avoiding the onset of metabolic syndrome and diabetes5-7 is not understood. We analyzed gene sequences obtained from 127 taxa, including 22 nectar-feeding bat and bird genera that collectively encompass four independent origins of nectarivory. We show these divergent taxa have undergone pervasive molecular adaptation in sugar catabolism pathways, including parallel selection in key glycolytic and fructolytic enzymes. We also uncover convergent amino acid substitutions in the otherwise evolutionarily conserved aldolase B (ALDOB), which catalyzes rate-limiting steps in fructolysis and glycolysis, and the mitochondrial gatekeeper pyruvate dehydrogenase (PDH), which links glycolysis and the tricarboxylic acid cycle. Metabolomic profile and enzyme functional assays are consistent with increased respiratory flux in nectar-feeding bats and help explain how these taxa can both sustain hovering flight and efficiently clear simple sugars. Taken together, our results indicate that nectar-feeding bats and birds have undergone metabolic adaptations that have enabled them to exploit a unique energy-rich dietary niche among vertebrates.


Subject(s)
Chiroptera , Animals , Birds/metabolism , Carbohydrates , Chiroptera/genetics , Energy Metabolism , Glucose/metabolism , Plant Nectar/metabolism , Sugars/metabolism
5.
Mol Biol Evol ; 38(9): 3864-3883, 2021 08 23.
Article in English | MEDLINE | ID: mdl-34426843

ABSTRACT

Dietary adaptation is a major feature of phenotypic and ecological diversification, yet the genetic basis of dietary shifts is poorly understood. Among mammals, Neotropical leaf-nosed bats (family Phyllostomidae) show unmatched diversity in diet; from a putative insectivorous ancestor, phyllostomids have radiated to specialize on diverse food sources including blood, nectar, and fruit. To assess whether dietary diversification in this group was accompanied by molecular adaptations for changing metabolic demands, we sequenced 89 transcriptomes across 58 species and combined these with published data to compare ∼13,000 protein coding genes across 66 species. We tested for positive selection on focal lineages, including those inferred to have undergone dietary shifts. Unexpectedly, we found a broad signature of positive selection in the ancestral phyllostomid branch, spanning genes implicated in the metabolism of all major macronutrients, yet few positively selected genes at the inferred switch to plantivory. Branches corresponding to blood- and nectar-based diets showed selection in loci underpinning nitrogenous waste excretion and glycolysis, respectively. Intriguingly, patterns of selection in metabolism genes were mirrored by those in loci implicated in craniofacial remodeling, a trait previously linked to phyllostomid dietary specialization. Finally, we show that the null model of the widely-used branch-site test is likely to be misspecified, with the implication that the test is too conservative and probably under-reports true cases of positive selection. Our findings point to a complex picture of adaptive radiation, in which the evolution of new dietary specializations has been facilitated by early adaptations combined with the generation of new genetic variation.


Subject(s)
Carbohydrate Metabolism/genetics , Chiroptera/genetics , Diet , Evolution, Molecular , Selection, Genetic , Adaptation, Biological/genetics , Animals , Chiroptera/metabolism , Feeding Behavior
6.
Genes Brain Behav ; 20(8): e12767, 2021 11.
Article in English | MEDLINE | ID: mdl-34427038

ABSTRACT

Attention-deficit/hyperactivity disorder (ADHD) a common neurodevelopmental disorder of childhood and often comorbid with other externalizing disorders (EDs). There is evidence that externalizing behaviors share a common genetic etiology. Recently, a genome-wide, multigenerational sample linked variants in the Lphn3 gene to ADHD and other externalizing behaviors. Likewise, limited research in animal models has provided converging evidence that Lphn3 plays a role in EDs. This study examined the impact of Lphn3 deletion (i.e., Lphn3-/- ) in rats on measures of behavioral control associated with externalizing behavior. Impulsivity was assessed for 30 days via a differential reinforcement of low rates (DRL) task and working memory evaluated for 25 days using a delayed spatial alternation (DSA) task. Data from both tasks were averaged into 5-day testing blocks. We analyzed overall performance, as well as response patterns in just the first and last blocks to assess acquisition and steady-state performance, respectively. "Positive control" measures on the same tasks were measured in an accepted animal model of ADHD-the spontaneously hypertensive rat (SHR). Compared with wildtype controls, Lphn3-/- rats exhibited deficits on both the DRL and DSA tasks, indicative of deficits in impulsive action and working memory, respectively. These deficits were less severe than those in the SHRs, who were profoundly impaired on both tasks compared with their control strain, Wistar-Kyoto rats. The results provide evidence supporting a role for Lphn3 in modulating inhibitory control and working memory, and suggest additional research evaluating the role of Lphn3 in the manifestation of EDs more broadly is warranted.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Disease Models, Animal , Executive Function , Animals , Female , Male , Rats , Attention Deficit Disorder with Hyperactivity/genetics , Attention Deficit Disorder with Hyperactivity/physiopathology , Gene Deletion , Rats, Inbred SHR , Rats, Sprague-Dawley , Spatial Behavior
7.
Mol Biol Evol ; 38(12): 5726-5734, 2021 12 09.
Article in English | MEDLINE | ID: mdl-34463769

ABSTRACT

Rhodopsin comprises an opsin attached to a retinal chromophore and is the only visual pigment conferring dim-light vision in vertebrates. On activation by photons, the retinal group becomes detached from the opsin, which is then inactive until it is recharged. Of all vertebrate species, those that dive face unique visual challenges, experiencing rapid decreases in light level and hunting in near darkness. Here, we combine sequence analyses with functional assays to show that the rhodopsin pigments of four divergent lineages of deep-diving vertebrates have undergone convergent increases in their retinal release rate. We compare gene sequences and detect parallel amino acids between penguins and diving mammals and perform mutagenesis to show that a single critical residue fully explains the observed increases in retinal release rate in both the emperor penguin and beaked whale. At the same time, we find that other shared sites have no significant effect on retinal release, implying that convergence does not always signify adaptive significance. We propose that accelerated retinal release confers rapid rhodopsin recharging, enabling the visual systems of diving species to adjust quickly to changing light levels as they descend through the water column. This contrasts with nocturnal species, where adaptation to darkness has been attributed to slower retinal release rates.


Subject(s)
Rhodopsin , Vertebrates , Animals , Darkness , Mammals/metabolism , Retina/metabolism , Rhodopsin/genetics , Rhodopsin/metabolism , Vertebrates/genetics , Vertebrates/metabolism
8.
Mol Ecol ; 30(23): 6449-6467, 2021 12.
Article in English | MEDLINE | ID: mdl-34146369

ABSTRACT

Comprising more than 1,400 species, bats possess adaptations unique among mammals including powered flight, unexpected longevity, and extraordinary immunity. Some of the molecular mechanisms underlying these unique adaptations includes DNA repair, metabolism and immunity. However, analyses have been limited to a few divergent lineages, reducing the scope of inferences on gene family evolution across the Order Chiroptera. We conducted an exhaustive comparative genomic study of 37 bat species, one generated in this study, encompassing a large number of lineages, with a particular emphasis on multi-gene family evolution across immune and metabolic genes. In agreement with previous analyses, we found lineage-specific expansions of the APOBEC3 and MHC-I gene families, and loss of the proinflammatory PYHIN gene family. We inferred more than 1,000 gene losses unique to bats, including genes involved in the regulation of inflammasome pathways such as epithelial defence receptors, the natural killer gene complex and the interferon-gamma induced pathway. Gene set enrichment analyses revealed genes lost in bats are involved in defence response against pathogen-associated molecular patterns and damage-associated molecular patterns. Gene family evolution and selection analyses indicate bats have evolved fundamental functional differences compared to other mammals in both innate and adaptive immune system, with the potential to enhance antiviral immune response while dampening inflammatory signalling. In addition, metabolic genes have experienced repeated expansions related to convergent shifts to plant-based diets. Our analyses support the hypothesis that, in tandem with flight, ancestral bats had evolved a unique set of immune adaptations whose functional implications remain to be explored.


Subject(s)
Chiroptera , Adaptation, Physiological/genetics , Animals , Chiroptera/genetics , Evolution, Molecular , Genome , Genomics , Humans , Phylogeny
9.
Mol Ecol ; 30(13): 3299-3312, 2021 07.
Article in English | MEDLINE | ID: mdl-33171014

ABSTRACT

The application of metabarcoding to environmental and invertebrate-derived DNA (eDNA and iDNA) is a new and increasingly applied method for monitoring biodiversity across a diverse range of habitats. This approach is particularly promising for sampling in the biodiverse humid tropics, where rapid land-use change for agriculture means there is a growing need to understand the conservation value of the remaining mosaic and degraded landscapes. Here we use iDNA from blood-feeding leeches (Haemadipsa picta) to assess differences in mammalian diversity across a gradient of forest degradation in Sabah, Malaysian Borneo. We screened 557 individual leeches for mammal DNA by targeting fragments of the 16S rRNA gene and detected 14 mammalian genera. We recorded lower mammal diversity in the most heavily degraded forest compared to higher quality twice logged forest. Although the accumulation curves of diversity estimates were comparable across these habitat types, diversity was higher in twice logged forest, with more taxa of conservation concern. In addition, our analysis revealed differences between the community recorded in the heavily logged forest and that of the twice logged forest. By revealing differences in mammal diversity across a human-modified tropical landscape, our study demonstrates the value of iDNA as a noninvasive biomonitoring approach in conservation assessments.


Subject(s)
Ecosystem , Leeches , Animals , Biodiversity , Borneo , Conservation of Natural Resources , DNA/genetics , Forests , Humans , Malaysia , Mammals/genetics , RNA, Ribosomal, 16S
10.
J Vis Exp ; (152)2019 10 23.
Article in English | MEDLINE | ID: mdl-31710024

ABSTRACT

As high-throughput sequencing technologies advance, standardized methods for high quality tissue acquisition and preservation allow for the extension of these methods to non-model organisms. A series of protocols to optimize tissue collection from bats has been developed for a series of high-throughput sequencing approaches. Outlined here are protocols for the capture of bats, desired demographics to be collected for each bat, and optimized methods to minimize stress on a bat during tissue collection. Specifically outlined are methods for collecting and treating tissue to obtain (i) DNA for high molecular weight genomic analyses, (ii) RNA for tissue-specific transcriptomes, and (iii) proteins for proteomic-level analyses. Lastly, also outlined is a method to avoid lethal sampling by creating viable primary cell cultures from wing clips. A central motivation of these methods is to maximize the amount of potential molecular and morphological data for each bat and suggest optimal ways to preserve tissues so they retain their value as new methods develop in the future. This standardization has become particularly important as initiatives to sequence chromosome-level, error-free genomes of species across the world have emerged, in which multiple scientific parties are spearheading the sequencing of different taxonomic groups. The protocols outlined herein define the ideal tissue collection and tissue preservation methods for Bat1K, the consortium that is sequencing the genomes of every species of bat.


Subject(s)
Chiroptera/genetics , Genomics/methods , Primary Cell Culture/methods , Proteomics/methods , Tissue Preservation , Animals , Genome , High-Throughput Nucleotide Sequencing , Phylogeny , Transcriptome
11.
Lab Chip ; 19(11): 2000-2008, 2019 06 07.
Article in English | MEDLINE | ID: mdl-31049521

ABSTRACT

Paper microfluidic devices (including lateral flow assays) offer an excellent combination of utility and low cost. Many paper microfluidic devices are fabricated using the Xerox ColorQube line of commercial wax-based color printers; the wax ink serves as a hydrophobic barrier to fluid flow. These printers are capable of depositing four different colors of ink, cyan (C), magenta (M), yellow (Y), and black (K), plus 11 combinations of these colors (CM, CY, CK, MY, MK, YK, CMY, CMK, CYK, MYK, and CMYK), although most researchers use only black ink to print paper microfluidic devices. Recently, as part of a project to develop a computer-aided design framework for use with paper microfluidics devices, we unexpectedly observed that different colors of wax ink behave differently in paper microfluidics. We found that among the single colors of ink, black ink actually had the most barrier failures, and magenta ink had the fewest barrier failures. In addition, some combinations of colors performed even better than magenta: the combinations CY, MK, YK, CMY, CYK and MYK had no barrier failures in our study. We also found that the printer delivers significantly different amounts of ink to the paper for the different color combinations, and in general, the color combinations that formed the strongest barriers to fluid flow were the ones that had the most ink delivered to the paper. This suggests that by simply weighing paper samples printed with all 15 combinations of colors, one can easily find the color combinations most likely to form a strong barrier for a given printer. Finally, to show that deliberate choices of ink colors can actually be used to create new functions in paper microfluidics, we designed and tested a new color-based "antifuse" structure that protects paper microfluidic devices from a typical operator error (addition of too much fluid to the device). Our results provide a set of color choice guidelines that designers can use to control the behavior of their paper microfluidics.

SELECTION OF CITATIONS
SEARCH DETAIL
...