Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Front Neurosci ; 10: 135, 2016.
Article in English | MEDLINE | ID: mdl-27065793

ABSTRACT

Distributed microelectrode array (MEA) recordings from consistent, viable, ≥500 µm thick tissue preparations over time periods from days to weeks may aid in studying a wide range of problems in neurobiology that require in vivo-like organotypic morphology. Existing tools for electrically interfacing with organotypic slices do not address necrosis that inevitably occurs within thick slices with limited diffusion of nutrients and gas, and limited removal of waste. We developed an integrated device that enables long-term maintenance of thick, functionally active, brain tissue models using interstitial perfusion and distributed recordings from thick sections of explanted tissue on a perforated multi-electrode array. This novel device allows for automated culturing, in situ imaging, and extracellular multi-electrode interfacing with brain slices, 3-D cell cultures, and potentially other tissue culture models. The device is economical, easy to assemble, and integrable with standard electrophysiology tools. We found that convective perfusion through the culture thickness provided a functional benefit to the preparations as firing rates were generally higher in perfused cultures compared to their respective unperfused controls. This work is a step toward the development of integrated tools for days-long experiments with more consistent, healthier, thicker, and functionally more active tissue cultures with built-in distributed electrophysiological recording and stimulation functionality. The results may be useful for the study of normal processes, pathological conditions, and drug screening strategies currently hindered by the limitations of acute (a few hours long) brain slice preparations.

2.
Brain Stimul ; 9(1): 86-100, 2016.
Article in English | MEDLINE | ID: mdl-26607483

ABSTRACT

BACKGROUND: Electrical brain stimulation has shown promise for reducing seizures in drug-resistant epilepsy, but the electrical stimulation parameter space remains largely unexplored. New stimulation parameters, electrode types, and stimulation targets may be more effective in controlling seizures compared to currently available options. HYPOTHESIS: We hypothesized that a novel electrical stimulation approach involving distributed multielectrode microstimulation at the epileptic focus would reduce seizure frequency in the tetanus toxin model of temporal lobe epilepsy. METHODS: We explored a distributed multielectrode microstimulation (DMM) approach in which electrical stimulation was delivered through 15 33-µm-diameter electrodes implanted at the epileptic focus (dorsal hippocampus) in the rat tetanus toxin model of temporal lobe epilepsy. RESULTS: We show that hippocampal theta (6-12 Hz brain oscillations) is decreased in this animal model during awake behaving conditions compared to control animals (p < 10(-4)). DMM with biphasic, theta-range (6-12 Hz/electrode) pulses delivered asynchronously on the 15 microelectrodes was effective in reducing seizures by 46% (p < 0.05). When theta pulses or sinusoidal stimulation was delivered synchronously and continuously on the 15 microelectrodes, or through a single macroelectrode, no effects on seizure frequency were observed. High frequency stimulation (>16.66 Hz/per electrode), in contrast, had a tendency to increase seizure frequency. CONCLUSIONS: These results indicate that DMM could be a new effective approach to therapeutic brain stimulation for reducing seizures in epilepsy.


Subject(s)
Deep Brain Stimulation , Epilepsy, Temporal Lobe/therapy , Hippocampus/physiopathology , Seizures/therapy , Animals , Epilepsy, Temporal Lobe/etiology , Male , Rats , Rats, Sprague-Dawley , Seizures/etiology , Tetanus Toxin/toxicity , Theta Rhythm
3.
Proc Natl Acad Sci U S A ; 112(51): 15743-8, 2015 Dec 22.
Article in English | MEDLINE | ID: mdl-26644558

ABSTRACT

We recently demonstrated that position in visual space is represented by grid cells in the primate entorhinal cortex (EC), suggesting that visual exploration of complex scenes in primates may employ signaling mechanisms similar to those used during exploration of physical space via movement in rodents. Here, we describe a group of saccade direction (SD) cells that encode eye movement information in the monkey EC during free-viewing of complex images. Significant saccade direction encoding was found in 20% of the cells recorded in the posterior EC. SD cells were generally broadly tuned and two largely separate populations of SD cells encoded future and previous saccade direction. Some properties of these cells resemble those of head-direction cells in rodent EC, suggesting that the same neural circuitry may be capable of performing homologous spatial computations under different exploratory contexts.


Subject(s)
Entorhinal Cortex/physiology , Saccades/physiology , Animals , Macaca mulatta , Male , Photic Stimulation
4.
Elife ; 4: e07192, 2015 Jul 03.
Article in English | MEDLINE | ID: mdl-26140329

ABSTRACT

Optogenetic techniques enable precise excitation and inhibition of firing in specified neuronal populations and artifact-free recording of firing activity. Several studies have suggested that optical stimulation provides the precision and dynamic range requisite for closed-loop neuronal control, but no approach yet permits feedback control of neuronal firing. Here we present the 'optoclamp', a feedback control technology that provides continuous, real-time adjustments of bidirectional optical stimulation in order to lock spiking activity at specified targets over timescales ranging from seconds to days. We demonstrate how this system can be used to decouple neuronal firing levels from ongoing changes in network excitability due to multi-hour periods of glutamatergic or GABAergic neurotransmission blockade in vitro as well as impinging vibrissal sensory drive in vivo. This technology enables continuous, precise optical control of firing in neuronal populations in order to disentangle causally related variables of circuit activation in a physiologically and ethologically relevant manner.


Subject(s)
Action Potentials , Cytological Techniques/methods , Neurons/physiology , Optogenetics/methods , Feedback , Humans
5.
Nat Commun ; 6: 6339, 2015 Mar 09.
Article in English | MEDLINE | ID: mdl-25751516

ABSTRACT

Homeostatic plasticity encompasses a set of mechanisms that are thought to stabilize firing rates in neural circuits. The most widely studied form of homeostatic plasticity is upward synaptic scaling (upscaling), characterized by a multiplicative increase in the strength of excitatory synaptic inputs to a neuron as a compensatory response to chronic reductions in firing rate. While reduced spiking is thought to trigger upscaling, an alternative possibility is that reduced glutamatergic transmission generates this plasticity directly. However, spiking and neurotransmission are tightly coupled, so it has been difficult to determine their independent roles in the scaling process. Here we combined chronic multielectrode recording, closed-loop optogenetic stimulation, and pharmacology to show that reduced glutamatergic transmission directly triggers cell-wide synaptic upscaling. This work highlights the importance of synaptic activity in initiating signalling cascades that mediate upscaling. Moreover, our findings challenge the prevailing view that upscaling functions to homeostatically stabilize firing rates.


Subject(s)
Homeostasis/physiology , Neuronal Plasticity/physiology , Synapses/physiology , Synaptic Transmission/physiology , Animals , Excitatory Postsynaptic Potentials/physiology , Immunohistochemistry , Optogenetics , Patch-Clamp Techniques , Rats , Rats, Sprague-Dawley
7.
Front Neuroeng ; 7: 16, 2014.
Article in English | MEDLINE | ID: mdl-24971060

ABSTRACT

Microelectrode arrays (wire diameter <50 µm) were compared to traditional macroelectrodes for deep brain stimulation (DBS). Understanding the neuronal activation volume may help solve some of the mysteries associated with DBS, e.g., its mechanisms of action. We used c-fos immunohistochemistry to investigate neuronal activation in the rat hippocampus caused by multi-micro- and macroelectrode stimulation. At ± 1V stimulation at 25 Hz, microelectrodes (33 µm diameter) had a radius of activation of 100 µm, which is 50% of that seen with 150 µm diameter macroelectrode stimulation. Macroelectrodes activated about 5.8 times more neurons than a single microelectrode, but displaced ~20 times more neural tissue. The sphere of influence of stimulating electrodes can be significantly increased by reducing their impedance. By ultrasonic electroplating (sonicoplating) the microelectrodes with platinum to increase their surface area and reduce their impedance by an order of magnitude, the radius of activation increased by 50 µm and more than twice the number of neurons were activated within this increased radius compared to unplated microelectrodes. We suggest that a new approach to DBS, one that uses multiple high-surface area microelectrodes, may be more therapeutically effective due to increased neuronal activation.

8.
Front Neural Circuits ; 7: 184, 2013.
Article in English | MEDLINE | ID: mdl-24367294

ABSTRACT

To study sensory processing, stimuli are delivered to the sensory organs of animals and evoked neural activity is recorded downstream. However, noise and uncontrolled modulatory input can interfere with repeatable delivery of sensory stimuli to higher brain regions. Here we show how channelrhodopsin-2 (ChR2) can be used to deliver continuous, subthreshold, time-varying currents to neurons at any point along the sensory-motor pathway. To do this, we first deduce the frequency response function of ChR2 using a Markov model of channel kinetics. We then confirm ChR2's frequency response characteristics using continuously-varying optical stimulation of neurons that express one of three ChR2 variants. We find that wild-type ChR2 and the E123T/H134R mutant ("CheTA") can pass continuously-varying subthreshold stimuli with frequencies up to ~70 Hz. Additionally, we find that wild-type ChR2 exhibits a strong resonance at ~6-10 Hz. Together, these results indicate that ChR2-derived optogenetic tools are useful for delivering highly repeatable artificial stimuli that mimic in vivo synaptic bombardment.


Subject(s)
Neurons/physiology , Optogenetics/methods , Action Potentials/drug effects , Action Potentials/physiology , Animals , Channelrhodopsins , Neural Pathways/drug effects , Neural Pathways/physiology , Neurons/drug effects , Rats
9.
Article in English | MEDLINE | ID: mdl-22615686

ABSTRACT

Pathological high frequency oscillations (250-600 Hz) are present in the brains of epileptic animals and humans. The etiology of these oscillations and how they contribute to the diseased state remains unclear. This work identifies the presence of microstimulation-evoked high frequency oscillations (250-400 Hz) in dissociated neuronal networks cultured on microelectrode arrays (MEAs). Oscillations are more apparent with higher stimulus voltages. As with in vivo studies, activity is isolated to a single electrode, however, the MEA provides improved spatial resolution with no spread of the oscillation to adjacent electrodes 200 µm away. Oscillations develop across four weeks in vitro. Oscillations still occur in the presence of tetrodotoxin and synaptic blockers, and they cause no apparent disruption in the ability of oscillation-presenting electrodes to elicit directly evoked action potentials (dAPs) or promote the spread of synaptic activity throughout the culture. Chelating calcium with ethylene glycol tetraacetic acid (EGTA) causes a temporal prolongation of the oscillation. Finally, carbenoxolone significantly reduces or eliminates the high frequency oscillations. Gap junctions may play a significant role in maintaining the oscillation given the inhibitory effect of carbenoxolone, the propagating effect of reduced calcium conditions and the isolated nature of the activity as demonstrated in previous studies. This is the first demonstration of stimulus-evoked high frequency oscillations in dissociated cultures. Unlike current models that rely on complex in vivo recording conditions, this work presents a simple controllable model in neuronal cultures on MEAs to further investigate how the oscillations occur at the molecular level and how they may contribute to the pathophysiology of disease.

10.
Article in English | MEDLINE | ID: mdl-23346047

ABSTRACT

Single neuron feedback control techniques, such as voltage clamp and dynamic clamp, have enabled numerous advances in our understanding of ion channels, electrochemical signaling, and neural dynamics. Although commercially available multichannel recording and stimulation systems are commonly used for studying neural processing at the network level, they provide little native support for real-time feedback. We developed the open-source NeuroRighter multichannel electrophysiology hardware and software platform for closed-loop multichannel control with a focus on accessibility and low cost. NeuroRighter allows 64 channels of stimulation and recording for around US $10,000, along with the ability to integrate with other software and hardware. Here, we present substantial enhancements to the NeuroRighter platform, including a redesigned desktop application, a new stimulation subsystem allowing arbitrary stimulation patterns, low-latency data servers for accessing data streams, and a new application programming interface (API) for creating closed-loop protocols that can be inserted into NeuroRighter as plugin programs. This greatly simplifies the design of sophisticated real-time experiments without sacrificing the power and speed of a compiled programming language. Here we present a detailed description of NeuroRighter as a stand-alone application, its plugin API, and an extensive set of case studies that highlight the system's abilities for conducting closed-loop, multichannel interfacing experiments.

11.
Article in English | MEDLINE | ID: mdl-23366840

ABSTRACT

Deep Brain Stimulation (DBS) has provided remarkable relief to patients with brain disorders. Traditionally, DBS is performed through a single macroelectrode implanted at a specific deep brain structure (like the subthalamic nucleus for Parkinson's disease). Despite its great success, little is known about its mechanisms of action. We propose that using several microelectrodes for stimulation, instead of a single macroelectrode, may provide advantages including reduced tissue damage and increased brain area activated. We compare the area of brain affected by macroelectrode and microelectrode arrays implanted in rat hippocampus using stimulation-induced c-Fos expression and immunohistochemistry.


Subject(s)
Action Potentials/physiology , Deep Brain Stimulation/instrumentation , Deep Brain Stimulation/methods , Hippocampus/physiology , Microelectrodes , Nerve Net/physiology , Animals , Male , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Sensitivity and Specificity
12.
Epilepsia ; 51(11): 2289-96, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20946126

ABSTRACT

PURPOSE: High-frequency oscillations (HFOs) are an emerging biomarker for epileptic tissue. Yet the mechanism by which HFOs are produced is unknown, and their rarity makes them difficult to study. Our objective was to examine the occurrence of HFOs in relation to action potentials (APs) and the effect of microstimulation in the tetanus toxin (TT) model of epilepsy, a nonlesional model with a short latency to spontaneous seizures. METHODS: Rats were injected with TT into dorsal hippocampus and implanted with a 16-channel (8 × 2) multielectrode array, one row each in CA3 and CA1. After onset of spontaneous seizures (3-9 days), recordings were begun of APs and local field potentials, analyzed for the occurrence of interictal spikes and HFOs. Recordings were made during microstimulation of each electrode using customized, open-source software. RESULTS: Population bursts of APs during interictal spikes were phase-locked with HFOs, which were observable almost exclusively with high-amplitude interictal spikes. Furthermore, HFOs could reliably be produced by microstimulation of the hippocampus, providing evidence that these oscillations can be controlled temporally by external means. DISCUSSION: We show for the first time the occurrence of HFOs in the TT epilepsy model, an attractive preparation for their experimental investigation and, importantly, one with a different etiology than that of status models, providing further evidence of the generality of HFOs. The ability to provoke HFOs with microstimulation may prove useful for better understanding of HFOs by directly evoking them in the lab, and designing high-throughput techniques for presurgical localization of the epileptic focus.


Subject(s)
Disease Models, Animal , Electroencephalography/drug effects , Epilepsy/chemically induced , Evoked Potentials/drug effects , Tetanus Toxin/toxicity , Animals , Electric Stimulation , Electrodes, Implanted , Epilepsy/physiopathology , Fourier Analysis , Hippocampus/physiopathology , Male , Microelectrodes , Rats , Rats, Sprague-Dawley , Signal Processing, Computer-Assisted
13.
Article in English | MEDLINE | ID: mdl-20859449
14.
Article in English | MEDLINE | ID: mdl-20859448

ABSTRACT

Multiple extracellular microelectrodes (multi-electrode arrays, or MEAs) effectively record rapidly varying neural signals, and can also be used for electrical stimulation. Multi-electrode recording can serve as artificial output (efferents) from a neural system, while complex spatially and temporally targeted stimulation can serve as artificial input (afferents) to the neuronal network. Multi-unit or local field potential (LFP) recordings can not only be used to control real world artifacts, such as prostheses, computers or robots, but can also trigger or alter subsequent stimulation. Real-time feedback stimulation may serve to modulate or normalize aberrant neural activity, to induce plasticity, or to serve as artificial sensory input. Despite promising closed-loop applications, commercial electrophysiology systems do not yet take advantage of the bidirectional capabilities of multi-electrodes, especially for use in freely moving animals. We addressed this lack of tools for closing the loop with NeuroRighter, an open-source system including recording hardware, stimulation hardware, and control software with a graphical user interface. The integrated system is capable of multi-electrode recording and simultaneous patterned microstimulation (triggered by recordings) with minimal stimulation artifact. The potential applications of closed-loop systems as research tools and clinical treatments are broad; we provide one example where epileptic activity recorded by a multi-electrode probe is used to trigger targeted stimulation, via that probe, to freely moving rodents.

15.
J Vis Exp ; (39)2010 May 30.
Article in English | MEDLINE | ID: mdl-20517199

ABSTRACT

For the last century, many neuroscientists around the world have dedicated their lives to understanding how neuronal networks work and why they stop working in various diseases. Studies have included neuropathological observation, fluorescent microscopy with genetic labeling, and intracellular recording in both dissociated neurons and slice preparations. This protocol discusses another technology, which involves growing dissociated neuronal cultures on micro-electrode arrays (also called multi-electrode arrays, MEAs). There are multiple advantages to using this system over other technologies. Dissociated neuronal cultures on MEAs provide a simplified model in which network activity can be manipulated with electrical stimulation sequences through the array's multiple electrodes. Because the network is small, the impact of stimulation is limited to observable areas, which is not the case in intact preparations. The cells grow in a monolayer making changes in morphology easy to monitor with various imaging techniques. Finally, cultures on MEAs can survive for over a year in vitro which removes any clear time limitations inherent with other culturing techniques. Our lab and others around the globe are utilizing this technology to ask important questions about neuronal networks. The purpose of this protocol is to provide the necessary information for setting up, caring for, recording from and electrically stimulating cultures on MEAs. In vitro networks provide a means for asking physiologically relevant questions at the network and cellular levels leading to a better understanding of brain function and dysfunction.


Subject(s)
Brain/physiology , Microarray Analysis/instrumentation , Microelectrodes , Nerve Net/physiology , Animals , Brain/cytology , Brain/surgery , Cell Culture Techniques/instrumentation , Cell Culture Techniques/methods , Dissection , Electric Stimulation/instrumentation , Electric Stimulation/methods , Female , Nerve Net/cytology , Pregnancy , Rats
16.
Front Neuroeng ; 3: 5, 2010.
Article in English | MEDLINE | ID: mdl-20485478

ABSTRACT

Implantable microelectrode arrays (MEAs) have been a boon for neural stimulation and recording experiments. Commercially available MEAs have high impedances, due to their low surface area and small tip diameters, which are suitable for recording single unit activity. Lowering the electrode impedance, but preserving the small diameter, would provide a number of advantages, including reduced stimulation voltages, reduced stimulation artifacts and improved signal-to-noise ratio. Impedance reductions can be achieved by electroplating the MEAs with platinum (Pt) black, which increases the surface area but has little effect on the physical extent of the electrodes. However, because of the low durability of Pt black plating, this method has not been popular for chronic use. Sonicoplating (i.e. electroplating under ultrasonic agitation) has been shown to improve the durability of Pt black on the base metals of macro-electrodes used for cyclic voltammetry. This method has not previously been characterized for MEAs used in chronic neural implants. We show here that sonicoplating can lower the impedances of microwire multi-electrode arrays (MMEA) by an order of magnitude or more (depending on the time and voltage of electroplating), with better durability compared to pulsed plating or traditional DC methods. We also show the improved stimulation and recording performance that can be achieved in an in vivo implantation study with the sonicoplated low-impedance MMEAs, compared to high-impedance unplated electrodes.

17.
Neuroinformatics ; 7(4): 213-32, 2009 Dec.
Article in English | MEDLINE | ID: mdl-20012509

ABSTRACT

This paper presents a method for improved automatic delineation of dendrites and spines from three-dimensional (3-D) images of neurons acquired by confocal or multi-photon fluorescence microscopy. The core advance presented here is a direct grayscale skeletonization algorithm that is constrained by a structural complexity penalty using the minimum description length (MDL) principle, and additional neuroanatomy-specific constraints. The 3-D skeleton is extracted directly from the grayscale image data, avoiding errors introduced by image binarization. The MDL method achieves a practical tradeoff between the complexity of the skeleton and its coverage of the fluorescence signal. Additional advances include the use of 3-D spline smoothing of dendrites to improve spine detection, and graph-theoretic algorithms to explore and extract the dendritic structure from the grayscale skeleton using an intensity-weighted minimum spanning tree (IW-MST) algorithm. This algorithm was evaluated on 30 datasets organized in 8 groups from multiple laboratories. Spines were detected with false negative rates less than 10% on most datasets (the average is 7.1%), and the average false positive rate was 11.8%. The software is available in open source form.


Subject(s)
Algorithms , Automation , Imaging, Three-Dimensional/methods , Microscopy, Confocal/methods , Microscopy, Fluorescence, Multiphoton/methods , Neurons/cytology , Access to Information , Color , Databases, Factual , Dendrites , Dendritic Spines , False Negative Reactions , Fluorescence , Software , Software Design
18.
Article in English | MEDLINE | ID: mdl-19964004

ABSTRACT

Referencing is frequently used to remove common-mode signals from multielectrode data, in both freely moving animals and in vitro preparations. For action potential (AP) detection, referencing by subtracting the common average signal has been shown to increase AP signal-to-noise ratio (SNR). This method fails, however, when large transients occur on individual electrodes, as occurs during electrical stimulation or with large APs during spontaneous recordings. To deal with these cases, we propose using the common median as a reference. The common median has an improved SNR for AP detection (leading to more isolated single units and more detected APs per unit) and, unlike common average referencing, does not generate spurious APs when processing large single-electrode transients.


Subject(s)
Action Potentials , Electrodes , Animals , Electric Stimulation , Male , Rats , Rats, Sprague-Dawley
19.
Article in English | MEDLINE | ID: mdl-19964440

ABSTRACT

Closed-loop systems, where neural signals are used to control electrical stimulation, show promise as powerful experimental platforms and nuanced clinical therapies. To increase the availability, affordability, and usability of these devices, we have created a flexible open source system capable of simultaneous stimulation and recording from multiple electrodes. The system is versatile, functioning with both freely moving animals and in vitro preparations. Current- and voltage-controlled stimulation waveforms with 1 micros resolution can be delivered to any electrode of an array. Stimulation sequences can be preprogrammed or triggered by ongoing neural activity, such as action potentials (APs) or local field potentials (LFPs). Recovery from artifact is rapid, allowing the detection of APs within 1 ms of stimulus offset. Since the stimulation subsystem provides simultaneous current/voltage monitoring, electrode impedance spectra can be calculated in real time. A sample closed-loop experiment is presented wherein interictal spikes from epileptic animals are used to trigger microstimulation.


Subject(s)
Brain/physiology , Electric Stimulation/instrumentation , Electrodes, Implanted , Electroencephalography/instrumentation , Epilepsy/physiopathology , Monitoring, Ambulatory/instrumentation , Neurons/physiology , Animals , Brain/cytology , Cells, Cultured , Epilepsy/diagnosis , Epilepsy/rehabilitation , Equipment Design , Equipment Failure Analysis , Feedback , Male , Neurons/cytology , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Sensitivity and Specificity
20.
Front Neuroeng ; 2: 12, 2009.
Article in English | MEDLINE | ID: mdl-19668698

ABSTRACT

Commercially available data acquisition systems for multielectrode recording from freely moving animals are expensive, often rely on proprietary software, and do not provide detailed, modifiable circuit schematics. When used in conjunction with electrical stimulation, they are prone to prolonged, saturating stimulation artifacts that prevent the recording of short-latency evoked responses. Yet electrical stimulation is integral to many experimental designs, and critical for emerging brain-computer interfacing and neuroprosthetic applications. To address these issues, we developed an easy-to-use, modifiable, and inexpensive system for multielectrode neural recording and stimulation. Setup costs are less than US$10,000 for 64 channels, an order of magnitude lower than comparable commercial systems. Unlike commercial equipment, the system recovers rapidly from stimulation and allows short-latency action potentials (<1 ms post-stimulus) to be detected, facilitating closed-loop applications and exposing neural activity that would otherwise remain hidden. To illustrate this capability, evoked activity from microstimulation of the rodent hippocampus is presented. System noise levels are similar to existing platforms, and extracellular action potentials and local field potentials can be recorded simultaneously. The system is modular, in banks of 16 channels, and flexible in usage: while primarily designed for in vivo use, it can be combined with commercial preamplifiers to record from in vitro multielectrode arrays. The system's open-source control software, NeuroRighter, is implemented in C#, with an easy-to-use graphical interface. As C# functions in a managed code environment, which may impact performance, analysis was conducted to ensure comparable speed to C++ for this application. Hardware schematics, layout files, and software are freely available. Since maintaining wired headstage connections with freely moving animals is difficult, we describe a new method of electrode-headstage coupling using neodymium magnets.

SELECTION OF CITATIONS
SEARCH DETAIL
...