Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Anal Chem ; 95(11): 4834-4839, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36876898

ABSTRACT

The growing opportunities recognized for covalent drug inhibitors, like KRAS G12C inhibitors, are driving the need for mass spectrometry methods that can quickly and robustly measure therapeutic drug activity in vivo for drug discovery research and development. Effective front-end sample preparation is critical for proteins extracted from tumors but is generally labor intensive and impractical for large sample numbers typical in pharmacodynamic (PD) studies. Herein, we describe an automated and integrated sample preparation method for the measurement of activity levels of KRAS G12C drug inhibitor alkylation from complex tumor samples involving high throughput detergent removal and preconcentration followed by quantitation using mass spectrometry. We introduce a robust assay with an average intra-assay coefficient of variation (CV) of 4% and an interassay CV of 6% obtained from seven studies, enabling us to understand the relationship between KRAS G12C target occupancy and the therapeutic PD effect from mouse tumor samples. Further, the data demonstrated that the drug candidate GDC-6036, a KRAS G12C covalent inhibitor, shows dose-dependent target inhibition (KRAS G12C alkylation) and MAPK pathway inhibition, which correlate with high antitumor potency in the MIA PaCa-2 pancreatic xenograft model.


Subject(s)
Antineoplastic Agents , Proto-Oncogene Proteins p21(ras) , Humans , Animals , Mice , Proto-Oncogene Proteins p21(ras)/genetics , Cell Line, Tumor , Mutation , Antineoplastic Agents/pharmacology , Disease Models, Animal
2.
Cells ; 9(4)2020 04 01.
Article in English | MEDLINE | ID: mdl-32244730

ABSTRACT

The blood-brain barrier (BBB) is one of the most complex and selective barriers in the human organism. Its role is to protect the brain and preserve the homeostasis of the central nervous system (CNS). The central elements of this physical and physiological barrier are the endothelial cells that form a monolayer of tightly joined cells covering the brain capillaries. However, as endothelial cells regulate nutrient delivery and waste product elimination, they are very sensitive to signals sent by surrounding cells and their environment. Indeed, the neuro-vascular unit (NVU) that corresponds to the assembly of extracellular matrix, pericytes, astrocytes, oligodendrocytes, microglia and neurons have the ability to influence BBB physiology. Extracellular vesicles (EVs) play a central role in terms of communication between cells. The NVU is no exception, as each cell can produce EVs that could help in the communication between cells in short or long distances. Studies have shown that EVs are able to cross the BBB from the brain to the bloodstream as well as from the blood to the CNS. Furthermore, peripheral EVs can interact with the BBB leading to changes in the barrier's properties. This review focuses on current knowledge and potential applications regarding EVs associated with the BBB.


Subject(s)
Blood-Brain Barrier/metabolism , Extracellular Vesicles/metabolism , Animals , Biological Transport , Humans , Models, Biological
3.
Clin Proteomics ; 17: 5, 2020.
Article in English | MEDLINE | ID: mdl-32055239

ABSTRACT

BACKGROUND: ALK tyrosine kinase inhibition has become a mainstay in the clinical management of ALK fusion positive NSCLC patients. Although ALK mutations can reliably predict the likelihood of response to ALK tyrosine kinase inhibitors (TKIs) such as crizotinib, they cannot reliably predict response duration or intrinsic/extrinsic therapeutic resistance. To further refine the application of personalized medicine in this indication, this study aimed to identify prognostic proteomic biomarkers in ALK fusion positive NSCLC patients to crizotinib. METHODS: Twenty-four patients with advanced NSCLC harboring ALK fusion were administered crizotinib in a phase IV trial which included blood sampling prior to treatment. Targeted proteomics of 327 proteins using MRM-MS was used to measure plasma levels at baseline (including pre-treatment and early treatment blood samples) and assess potential clinical association. RESULTS: Patients were categorized by duration of response: long-term responders [PFS ≥ 24 months (n = 7)], normal responders [3 < PFS < 24 months (n = 10)] and poor responders [PFS ≤ 3 months (n = 5)]. Several proteins were identified as differentially expressed between long-term responders and poor responders, including DPP4, KIT and LUM. Next, using machine learning algorithms, we evaluated the classification potential of 40 proteins. Finally, by integrating the different analytic methods, we selected 22 proteins as potential candidates for a blood-based prognostic signature of response to crizotinib in NSCLC patients harboring ALK fusion. CONCLUSION: In conjunction with ALK mutation, the expression of this proteomic signature may represent a liquid biopsy-based marker of long-term response to crizotinib in NSCLC. Expanding the utility of prognostic biomarkers of response duration could influence choice of therapy, therapeutic sequencing, and potentially the need for alternative or combination therapy.Trial registration ClinicalTrials.gov, NCT02041468. Registered 22 January 2014, https://clinicaltrials.gov/ct2/show/NCT02041468?term=NCT02041468&rank=1.

4.
Proteomics Clin Appl ; 11(7-8)2017 07.
Article in English | MEDLINE | ID: mdl-28319654

ABSTRACT

AIM: The alpha-synuclein (α-syn) level in human cerebrospinal fluid (CSF), as measured by immunoassays, is promising as a Parkinson's disease (PD) biomarker. However, the levels of total α-syn are inconsistent among studies with large cohorts and different measurement platforms. Total α-syn level also does not correlate with disease severity or progression. Here, the authors developed a highly sensitive MRM method to measure absolute CSF α-syn peptide concentrations without prior enrichment or fractionation, aiming to discover new candidate biomarkers. RESULTS: Six peptides covering 73% of protein sequence were reliably identified, and two were consistently quantified in cross-sectional and longitudinal cohorts. Absolute concentration of α-syn in human CSF was determined to be 2.1 ng/mL. A unique α-syn peptide, TVEGAGSIAAATGFVK (81-96), displayed excellent correlation with previous immunoassay results in two independent PD cohorts (p < 0.001), correlated with disease severity, and its changes significantly tracked the disease progression longitudinally. CONCLUSIONS: An MRM assay to quantify human CSF α-syn was developed and optimized. Sixty clinical samples from cross-sectional and longitudinal PD cohorts were analyzed with this approach. Although further larger scale validation is needed, the results suggest that α-syn peptide could serve as a promising biomarker in PD diagnosis and progression.


Subject(s)
Disease Progression , Parkinson Disease/cerebrospinal fluid , Parkinson Disease/diagnosis , alpha-Synuclein/cerebrospinal fluid , Adult , Aged , Female , Humans , Male , Middle Aged
5.
J Proteome Res ; 16(3): 1228-1238, 2017 03 03.
Article in English | MEDLINE | ID: mdl-28112948

ABSTRACT

Alzheimer's disease (AD), the most common form of dementia, afflicts about 50 million people worldwide. Currently, AD diagnosis is primarily based on psychological evaluation and can only be confirmed post-mortem. Reliable and objective biomarkers for prognosis and diagnosis have been sought for years. Together, tau and amyloid ß 1-42 (Aß42) in cerebrospinal fluid (CSF) have been shown to provide good diagnostic sensitivity and specificity. Additionally, phosphorylated forms of tau, such as tau pS181, have also shown promising results. However, the measurement of such markers currently relies on antibody-based immunoassays that have shown variability, leading to discrepant results across laboratories. To date, mass spectrometry methods developed to evaluate CSF tau and Aß42 are not compatible. We present in this article the development of a mass-spectrometry-based method of quantification for CSF tau and Aß42 in parallel. The absolute concentrations of tau and Aß42 we measured are on average 50 ng/mL (7-130 ng/mL) and 7.1 ng/mL (3-13 ng/mL), respectively. Analyses of CSF tau and Aß42, in a cohort of patients with AD, mild cognitive impairment, and healthy controls (30 subjects), provide significant group differences evaluated with ROC curves (AUC(control-AD) and AUC(control-MCI) = 1, AUC(MCI-AD) = 0.76), with at least equivalent diagnostic utility to immunoassay measurements in the same sample set. Finally, a significant and negative correlation was found between the tau and Aß peptides ratio and the disease severity.


Subject(s)
Alzheimer Disease/diagnosis , Amyloid beta-Peptides/cerebrospinal fluid , Mass Spectrometry/methods , Peptide Fragments/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Case-Control Studies , Humans , Mass Spectrometry/standards , ROC Curve , Sensitivity and Specificity , Severity of Illness Index
6.
Neuropharmacology ; 105: 487-499, 2016 06.
Article in English | MEDLINE | ID: mdl-26867503

ABSTRACT

The primary cause of Alzheimer's disease is unlikely to be the much studied markers amyloid beta or tau. Their widespread distribution throughout the brain does not account for the specific identity and deep subcortical location of the primarily vulnerable neurons. Moreover an unusual and intriguing feature of these neurons is that, despite their diverse transmitters, they all contain acetylcholinesterase. Here we show for the first time that (1) a peptide derived from acetylcholinesterase, with independent trophic functions that turn toxic in maturity, is significantly raised in the Alzheimer midbrain and cerebrospinal fluid; (2) a synthetic version of this peptide enhances calcium influx and eventual production of amyloid beta and tau phosphorylation via an allosteric site on the α7 nicotinic receptor; (3) a synthetic cyclic version of this peptide is neuroprotective against the toxicity not only of its linear counterpart but also of amyloid beta, thereby opening up the prospect of a novel therapeutic approach.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Brain/metabolism , Peptide Fragments/metabolism , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Acetylcholinesterase/metabolism , Allosteric Site , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/pharmacology , Animals , Biomarkers/metabolism , Brain/drug effects , Cell Survival/drug effects , Cholinesterase Inhibitors/pharmacology , Galantamine/pharmacology , Humans , Hydrogen Peroxide/metabolism , Neuroprotective Agents/pharmacology , PC12 Cells , Peptide Fragments/pharmacology , Peptides, Cyclic/metabolism , Peptides, Cyclic/pharmacology , Rats , Tissue Culture Techniques , tau Proteins/metabolism
7.
Expert Rev Proteomics ; 13(3): 251-8, 2016.
Article in English | MEDLINE | ID: mdl-26778576

ABSTRACT

The drug discovery and development processes are divided into different stages separated by milestones to indicate that significant progress has been made and that certain criteria for target validation, hits, leads and candidate drugs have been met. Proteomics is a promising approach for the identification of protein targets and biochemical pathways involved in disease process and thus plays an important role in several stages of the drug development. The blood-brain barrier is considered as a major bottleneck when trying to target new compounds to treat neurodegenerative diseases. Based on the survey of recent findings and with a projection on expected improvements, this report attempt to address how proteomics participates in drug development.


Subject(s)
Blood-Brain Barrier/metabolism , Drug Discovery/methods , Proteomics/methods , Animals , Capillary Permeability , Humans
8.
Proteomics ; 13(7): 1185-99, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23436736

ABSTRACT

In the neurovascular unit, brain microvascular endothelial cells develop characteristic barrier features that control the molecular exchanges between the blood and the brain. These characteristics are partially or totally lost when the cells are isolated for use in in vitro blood-brain barrier (BBB) models. Hence, the re-induction of barrier properties is crucial for the relevance of BBB models. Although the role of astrocyte promiscuity is well established, the molecular mechanisms of re-induction remain largely unknown. Here, we used a DIGE-based proteomics approach to study endothelial cellular proteins showing significant quantitative variations after BBB re-induction. We confirm that quantitative changes mainly concern proteins involved in cell structure and motility. Furthermore, we describe the possible involvement of the asymmetric dimethylarginine pathway in the BBB phenotype re-induction process and we discuss asymmetric dimethylarginine's potential role in regulating endothelial function (in addition to its role as a by-product of protein modification). Our results also suggest that the intracellular redox potential is lower in the in vitro brain capillary endothelial cells displaying re-induced BBB functions than in cells with limited BBB functions.


Subject(s)
Blood-Brain Barrier/metabolism , Electrophoresis, Gel, Two-Dimensional/methods , Endothelial Cells/metabolism , Neuroglia/metabolism , Animals , Arginine/analogs & derivatives , Blood-Brain Barrier/cytology , Cattle , Culture Media , Immunoblotting , Phenotype , Rats , Reproducibility of Results
9.
PLoS One ; 7(10): e48428, 2012.
Article in English | MEDLINE | ID: mdl-23119012

ABSTRACT

Although the physiological properties of the blood-brain barrier (BBB) are relatively well known, the phenotype of the component brain capillary endothelial cells (BCECs) has yet to be described in detail. Likewise, the molecular mechanisms that govern the establishment and maintenance of the BBB are largely unknown. Proteomics can be used to assess quantitative changes in protein levels and identify proteins involved in the molecular pathways responsible for cellular differentiation. Using the well-established in vitro BBB model developed in our laboratory, we performed a differential nano-LC MALDI-TOF/TOF-MS study of Triton X-100-soluble protein species from bovine BCECs displaying either limited BBB functions or BBB functions re-induced by glial cells. Due to the heterogeneity of the crude extract, we increased identification yields by applying a repeatable, reproducible fractionation process based on the proteins' relative hydrophobicity. We present proteomic and biochemical evidence to show that tissue non-specific alkaline phosphatase (TNAP) and Eps15 homology domain-containing protein 1(EDH1) are over-expressed by bovine BCECs after the re-induction of BBB properties. We discuss the impact of these findings on current knowledge of endothelial and BBB permeability.


Subject(s)
Alkaline Phosphatase/genetics , Blood-Brain Barrier/metabolism , Brain/metabolism , Endothelial Cells/metabolism , Gene Expression , Vesicular Transport Proteins/genetics , Alkaline Phosphatase/metabolism , Animals , Blood-Brain Barrier/chemistry , Cattle , Cells, Cultured , Endothelial Cells/chemistry , Enzyme Activation/drug effects , Levamisole/pharmacology , Neuroglia/metabolism , Proteomics , Rats , Vesicular Transport Proteins/metabolism
10.
J Proteome Res ; 11(7): 3774-81, 2012 Jul 06.
Article in English | MEDLINE | ID: mdl-22594965

ABSTRACT

Methods for isobaric tagging of peptides, iTRAQ or TMT, are commonly used platforms in mass spectrometry based quantitative proteomics. These two methods are very often used to quantitate proteins in complex samples, e.g., serum/plasma or CSF supporting biomarker discovery studies. The success of these studies depends on multiple factors, including the accuracy of ratios of reporter ions reflecting quantitative changes of proteins. Because reporter ions are generated during peptide fragmentation, the differences of chemical structure of iTRAQ balance groups may have an effect on how efficiently these groups are fragmented and thus how differences in protein expression will be measured. Because 4-plex and 8-plex iTRAQ reagents do have different structures of balanced groups, it has been postulated that indeed differences in protein identification and quantitation exist between these two reagents. In this study we controlled the ratios of tagged samples and compared quantitation of proteins using 4-plex versus 8-plex reagents in the context of a highly complex sample of human plasma using ABSciex 4800 MALDI-TOF/TOF mass spectrometer and ProteinPilot 4.0 software. We observed that 8-plex tagging provides more consistent ratios than 4-plex without compromising protein identification, thus allowing investigation of eight experimental conditions in one analytical experiment.


Subject(s)
Blood Proteins/chemistry , Proteome/chemistry , Staining and Labeling , Blood Proteins/metabolism , Humans , Peptide Fragments/chemistry , Proteolysis , Proteome/metabolism , Proteomics , Tandem Mass Spectrometry
11.
PLoS One ; 7(2): e31031, 2012.
Article in English | MEDLINE | ID: mdl-22359561

ABSTRACT

We wanted to determine whether methamphetamine use affects a subset of plasma proteins in HIV-infected persons. Plasma samples from two visits were identified for subjects from four groups: HIV+, ongoing, persistent METH use; HIV+, short-term METH abstinent; HIV+, long term METH abstinence; HIV negative, no history of METH use. Among 390 proteins identified, 28 showed significant changes in expression in the HIV+/persistent METH+ group over the two visits, which were not attributable to HIV itself. These proteins were involved in complement, coagulation pathways and oxidative stress. Continuous METH use is an unstable condition, altering levels of a number of plasma proteins.


Subject(s)
Blood Proteins/analysis , HIV Infections/blood , HIV-1 , Methamphetamine/pharmacology , Substance-Related Disorders/blood , Blood Coagulation , Complement System Proteins , HIV Infections/complications , Humans , Oxidative Stress , Proteomics , Substance-Related Disorders/complications
12.
Anal Biochem ; 421(2): 712-8, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22226790

ABSTRACT

Among many methods used to investigate protein/protein interactions, chemical cross-linking combined with mass spectrometry remains a vital experimental approach. Mapping peptides modified by cross-linker provides clues about proteins' interacting domains. One complication is that such modification may result from intra- but not intermolecular interactions. Therefore, for overall data interpretation, a combination of results from various platforms is necessary. It is postulated that the secretory isoform of gelsolin regulates several biological processes through interactions with proteins such as actin, fibronectin, vitamin D-binding protein, and unidentified receptors on the surface of eukaryotes; it also has been shown to self-assemble eventually leading to the formation of homo-multimers. As such, it is an excellent model for this study. We used four cross-linkers with arm length ranging from 7.7 to 21.7Å and MALDI-TOF/TOF mass spectrometry as the analytical platform. Results of this study show that MALDI-based mass spectrometry generates high quality data to show lysine residues modified by cross-linkers and combined with existing data based on crystallography (Protein Data Bank, PDB) can be used to discriminate between inter- and intramolecular linking.


Subject(s)
Gelsolin/chemistry , Protein Interaction Domains and Motifs , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Amino Acid Sequence , Cross-Linking Reagents/chemistry , Gelsolin/blood , Humans , Molecular Sequence Data , Protein Interaction Maps
13.
J Proteomics ; 75(2): 628-41, 2011 Dec 21.
Article in English | MEDLINE | ID: mdl-21982828

ABSTRACT

When in the vicinity of astrocytes, brain capillary endothelial cells (BCECs) develop the characteristic structural and functional features of the blood-brain barrier (BBB). The latter has low cellular permeability and restricts various compounds from entering the brain. We recently reported that the cytoskeleton-related proteins actin, gelsolin and filamin-A undergo the largest quantitative changes in bovine BCECs after re-induction of BBB functions by co-culture with glial cells. In the present study, we used an in-depth, proteomic approach to quantitatively compare differences in Triton-X-100-solubilized proteins from bovine BCECs with limited or re-induced BBB functions (i.e. cultured in the absence or presence of glial cells, respectively). The 81 protein spots of differing abundance were linked to 55 distinct genes. According to the Protein ANalysis THrough Evolutionary Relationships classification system and an Ingenuity Pathway Analysis, these quantitative changes mainly affected proteins involved in (i) cell structure and motility and (ii) protein metabolism and modification. The fold-changes affecting HSPB1, moesin and ANXA5 protein levels were confirmed by western blot analysis but were not accompanied by changes in the corresponding mRNA expression levels. Our results reveal that the bovine BCECs' phenotype adaptation to variations in their environment involves the reorganization of the actin cytoskeleton.


Subject(s)
Blood-Brain Barrier/physiology , Brain/blood supply , Cell Differentiation/physiology , Endothelial Cells/cytology , Actins/genetics , Animals , Annexins/genetics , Blood-Brain Barrier/cytology , Cattle , Coculture Techniques , Electrophoresis, Gel, Two-Dimensional , Endothelial Cells/physiology , HSP27 Heat-Shock Proteins/genetics , Microfilament Proteins , Neuroglia/cytology , Protein Interaction Maps , Proteomics/methods , RNA, Messenger/metabolism , Rats , Vimentin/genetics
14.
Proteomics Clin Appl ; 5(7-8): 405-14, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21751410

ABSTRACT

PURPOSE: Universal newborn screening for sickle cell diseases (SCDs) is not currently performed in many countries concerned by this public health problem. Owing to the technical and financial limitations of standard profiling methods (IEF coupled to subsequent HPLC), ethnically targeted neonatal screening is often preferred. Here, we demonstrate that MALDI-MS-based SCD newborn screening could be considered as a potential method for a strategy to universal screening because of its high throughput, cost-effectiveness, sensitivity and ability to automatically discriminate sickle haemoglobin. EXPERIMENTAL DESIGN: We carried out a retrospective study of dried blood spots from 844 Guthrie cards. Four determinations of 1000 mass spectra were performed from each tested dried blood spot. RESULTS: The MALDI-MS-based screening was highly correlated with the reference method. Only 2.3% of the samples presented a poor spectral quality. CONCLUSIONS AND CLINICAL RELEVANCE: Given that the overall acquisition, data reprocessing and software-assisted classification (ClinProTools™) time for processing four mass determinations (corresponding to one sample) was around 1 min, 1000 samples can be analysed per day. Rather than seeking to detect as many different haemoglobinopathies as possible, it would become possible to use MALDI-TOF-MS to screen (at a constant cost) as many samples as possible for sickle cell disease.


Subject(s)
Anemia, Sickle Cell/diagnosis , Hemoglobin, Sickle/analysis , High-Throughput Screening Assays/methods , Neonatal Screening/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Anemia, Sickle Cell/economics , Anemia, Sickle Cell/pathology , Case-Control Studies , Cost-Benefit Analysis , Female , High-Throughput Screening Assays/economics , Humans , Infant, Newborn , Male , Neonatal Screening/economics , Public Health , Quality Control , Retrospective Studies , Sensitivity and Specificity , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/economics
15.
J Proteome Res ; 10(4): 1468-80, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21302907

ABSTRACT

The FIP1L1-PDGFRA (F/P) fusion gene, which was identified as a recurrent molecular finding in hypereosinophilic syndrome (HES), lead to a constitutively increased tyrosine kinase activity of the fusion protein. Despite data obtained in animals or cell lines models, the mechanisms underlying the predominant eosinophil lineage targeting and the cytotoxicity of eosinophils in this leukemia remain unclear. To define more precisely intrinsic molecular events associated with F/P gene, we performed a proteomic analysis comparing F/P+ eosinophils (F/P-Eos) and eosinophils from healthy donors (C-Eos). Using 2D-DIGE and mass spectrometry techniques, we identified 41 proteins significantly overexpressed between F/P-Eos and C-Eos. Among them, 17.8% belonged to the oxidoreductase family. We further observed a down-expression of peroxiredoxin-2 (PRX-2) and an overexpression of src-homology-2 domain containing tyrosine phosphatase (SHP-1), enzymes regulating PDGFR downstream pathways, and especially intracellular reactive oxygen species (ROS) production. This profile, confirmed in immunoblot analysis, appears specific to F/P-Eos compared to controls and patients with idiopathic HES. In this clonal disorder possibly involving a pluripotent hematopoietic stem cell, we postulate that the well documented relationships between PDGFRA downstream signals and intracellular ROS levels might influence the phenotype of this leukemia.


Subject(s)
Eosinophils , Hypereosinophilic Syndrome/metabolism , Oncogene Proteins, Fusion/metabolism , Proteome/analysis , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Signal Transduction/physiology , mRNA Cleavage and Polyadenylation Factors/metabolism , Adult , Aged , Animals , Cell Line , Databases, Protein , Eosinophils/chemistry , Eosinophils/metabolism , Female , Humans , Hypereosinophilic Syndrome/genetics , Hypereosinophilic Syndrome/physiopathology , Male , Mass Spectrometry/methods , Middle Aged , Oncogene Proteins, Fusion/genetics , Oxidation-Reduction , Peroxiredoxins/genetics , Peroxiredoxins/metabolism , Reactive Oxygen Species/metabolism , Receptor, Platelet-Derived Growth Factor alpha/genetics , Two-Dimensional Difference Gel Electrophoresis/methods , mRNA Cleavage and Polyadenylation Factors/genetics
16.
J Transl Med ; 8: 137, 2010 Dec 20.
Article in English | MEDLINE | ID: mdl-21171974

ABSTRACT

BACKGROUND: Proteomic-based discovery of biomarkers for disease has recently come under scrutiny for a variety of issues; one prominent issue is the lack of orthogonal validation for biomarkers following discovery. Validation by ELISA or Western blot requires the use of antibodies, which for many potential biomarkers are under-characterized and may lead to misleading or inconclusive results. Gelsolin is one such biomarker candidate in HIV-associated neurocognitive disorders. METHODS: Samples from human (plasma and CSF), monkey (plasma), monocyte-derived macrophage (supernatants), and commercial gelsolin (recombinant and purified) were quantitated using Western blot assay and a variety of anti-gelsolin antibodies. Plasma and CSF was used for immunoaffinity purification of gelsolin which was identified in eight bands by tandem mass spectrometry. RESULTS: Immunoreactivity of gelsolin within samples and between antibodies varied greatly. In several instances, multiple bands were identified (corresponding to different gelsolin forms) by one antibody, but not identified by another. Moreover, in some instances immunoreactivity depended on the source of gelsolin, e.g. plasma or CSF. Additionally, some smaller forms of gelsolin were identified by mass spectrometry but not by any antibody. Recombinant gelsolin was used as reference sample. CONCLUSIONS: Orthogonal validation using specific monoclonal or polyclonal antibodies may reject biomarker candidates from further studies based on misleading or even false quantitation of those proteins, which circulate in various forms in body fluids.


Subject(s)
Antibodies/immunology , Gelsolin/immunology , Animals , Antibody Specificity/immunology , Biomarkers/analysis , Biomarkers/metabolism , Blotting, Western , Chromatography, Affinity , Chromatography, Liquid , Gelsolin/blood , Gelsolin/cerebrospinal fluid , Gelsolin/chemistry , Haplorhini , Humans , Mass Spectrometry , Reproducibility of Results , Titrimetry
17.
Proteome Sci ; 8: 57, 2010 Nov 15.
Article in English | MEDLINE | ID: mdl-21078152

ABSTRACT

BACKGROUND: Brain capillary endothelial cells (BCECs) form the physiological basis of the blood-brain barrier (BBB). The barrier function is (at least in part) due to well-known proteins such as transporters, tight junctions and metabolic barrier proteins (e.g. monoamine oxidase, gamma glutamyltranspeptidase and P-glycoprotein). Our previous 2-dimensional gel proteome analysis had identified a large number of proteins and revealed the major role of dynamic cytoskeletal remodelling in the differentiation of bovine BCECs. The aim of the present study was to elaborate a reference proteome of Triton X-100-soluble species from bovine BCECs cultured in the well-established in vitro BBB model developed in our laboratory. RESULTS: A total of 215 protein spots (corresponding to 130 distinct proteins) were identified by 2-dimensional gel electrophoresis, whereas over 350 proteins were identified by a shotgun approach. We classified around 430 distinct proteins expressed by bovine BCECs. Our large-scale gene expression analysis enabled the correction of mistakes referenced into protein databases (e.g. bovine vinculin) and constitutes valuable evidence for predictions based on genome annotation. CONCLUSIONS: Elaboration of a reference proteome constitutes the first step in creating a gene expression database dedicated to capillary endothelial cells displaying BBB characteristics. It improves of our knowledge of the BBB and the key proteins in cell structures, cytoskeleton organization, metabolism, detoxification and drug resistance. Moreover, our results emphasize the need for both appropriate experimental design and correct interpretation of proteome datasets.

18.
Brain Res Rev ; 62(1): 83-98, 2009 Dec 11.
Article in English | MEDLINE | ID: mdl-19770003

ABSTRACT

The blood-brain barrier (BBB) contributes to the brain homeostasis by regulating the passage of endogenous and exogenous compounds. This function is in part due to well-known proteins such as tight junction proteins, plasma membrane transporters and metabolic barrier proteins. Over the last decade, genomics and proteomics have emerged as supplementary tools for BBB research. The development of genomic and proteomic technologies has provided several means to extend the BBB knowledge and to investigate additional routes for the bypass of this barrier. These profiling technologies have been used on BBB models to decipher the physiological characteristics and, under stress conditions, to understand the molecular mechanisms of brain diseases. In this review, we will report and discuss the genomic and proteomic studies recently carried out to enhance the understanding of BBB features.


Subject(s)
Blood-Brain Barrier/metabolism , Brain/metabolism , Animals , Biological Transport/genetics , Endothelial Cells/metabolism , Gene Expression Profiling , Humans , Protein Array Analysis
19.
Proteomics ; 9(5): 1207-19, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19206108

ABSTRACT

The brain vascular endothelium operates as a dynamic regulatory interface to maintain the cell environment of the nervous system. In the vicinity of astrocytes, brain endothelial cells develop characteristic features conferring a strong cellular impermeability which limits the penetration of various compounds. The aim of our study was to determine by differential proteomic analysis the changes occurring in bovine brain capillary endothelial cells (BBCEC) differentiated in co-culture with astrocytes compared with endothelial cells cultured alone. In order to obtain reproducible and meaningful protein profiles of in vitro blood-brain barrier models, three sample preparation procedures were carried out to provide the first 2-D comparative proteomic study of BBCEC. Our study highlights advantages and drawbacks of each procedure. The cellular proteins prepared from mechanical scraping of collagen-seeded BBCEC were strongly contaminated by serum proteins. Enzymatic dissociation of BBCEC by trypsin or collagenase solved this problem. A comparative 2-DE profile study of collagenase-harvested BBCEC revealed that cytoskeleton-related proteins (actin, gelsolin and filamin-A) show the most significant quantitative changes in the Triton soluble protein fraction from BBCEC that exhibit characteristics closest to the in vivo situation.


Subject(s)
Astrocytes/cytology , Coculture Techniques/methods , Endothelial Cells/cytology , Endothelial Cells/metabolism , Proteome/analysis , Actins/analysis , Animals , Astrocytes/metabolism , Blood-Brain Barrier/metabolism , Brain/blood supply , Brain/cytology , Cattle , Cell Differentiation , Cells, Cultured , Contractile Proteins/analysis , Cytoskeleton/metabolism , Filamins , Gelsolin/analysis , Microfilament Proteins/analysis
20.
J Proteome Res ; 7(11): 5004-16, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18922030

ABSTRACT

The development of chronic heart failure (CHF) following myocardial infarction is characterized by progressive alterations of left ventricle (LV) structure and function called left ventricular remodeling (LVR), but the mechanism of LVR remains still unclear. Moreover, information concerning the global alteration protein pattern during the LVR will be helpful for a better understanding of the process. We performed differential proteomic analysis of whole LV proteins using an experimental model of CHF in which myocardial infarction was induced in adult male rats by left coronary ligation. Among 1000 protein spots detected in 2D-gels, 49 were differentially expressed in LV of 2-month-old CHF-rats, corresponding to 27 different identified proteins (8 spots remained unidentified), classified in different functional groups as being heat shock proteins, reticulum endoplasmic stress proteins, oxidative stress proteins, glycolytic enzymes, fatty acid metabolism enzymes, tricarboxylic acid cycle proteins and respiratory chain proteins. We validated modulation of selected proteins using Western blot analysis. Our data showed that proteins involved in cardiac metabolism and oxidative stress are modulated during LVR. Interestingly, proteins of stress response showed different adaptation pathways in the early and late phase of LVR. Expression of four proteins, glyceraldehyde-3-phosphate dehydrogenase, alphaB-crystallin, peroxiredoxin 2, and isocitrate dehydrogenase, was linked to echographic parameters according to heart failure severity.


Subject(s)
Heart Failure/metabolism , Models, Cardiovascular , Myocardium/metabolism , Proteome/analysis , Ventricular Remodeling/physiology , Animals , Echocardiography , Heart Failure/etiology , Heart Failure/physiopathology , Male , Proteomics/methods , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...