Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Arch Dis Child ; 109(5): 409-413, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38320813

ABSTRACT

INTRODUCTION: This study reviews the first 3 years of delivery of the first National Health Service (NHS)-commissioned trio rapid whole genome sequencing (rWGS) service for acutely unwell infants and children in Wales. METHODS: Demographic and phenotypic data were prospectively collected as patients and their families were enrolled in the Wales Infants' and childreN's Genome Service (WINGS). These data were reviewed alongside trio rWGS results. RESULTS: From April 2020 to March 2023, 82 families underwent WINGS, with a diagnostic yield of 34.1%. The highest diagnostic yields were noted in skeletal dysplasias, neurological or metabolic phenotypes. Mean time to reporting was 9 days. CONCLUSION: This study demonstrates that trio rWGS is having a positive impact on the care of acutely unwell infants and children in an NHS setting. In particular, the study shows that rWGS can be applied in an NHS setting, achieving a diagnostic yield comparable with the previously published diagnostic yields achieved in research settings, while also helping to improve patient care and management.


Subject(s)
Genetic Testing , State Medicine , Infant , Child , Humans , Wales , Whole Genome Sequencing/methods , Genetic Testing/methods , Phenotype
2.
Eur J Hum Genet ; 31(12): 1421-1429, 2023 12.
Article in English | MEDLINE | ID: mdl-37704779

ABSTRACT

Börjeson-Forssman-Lehmann syndrome (BFLS) is an X-linked intellectual disability syndrome caused by variants in the PHF6 gene. We ascertained 19 individuals from 15 families with likely pathogenic or pathogenic PHF6 variants (11 males and 8 females). One family had previously been reported. Six variants were novel. We analysed the clinical and genetic findings in our series and compared them with reported BFLS patients. Affected males had classic features of BFLS including intellectual disability, distinctive facies, large ears, gynaecomastia, hypogonadism and truncal obesity. Carrier female relatives of affected males were unaffected or had only mild symptoms. The phenotype of affected females with de novo variants overlapped with the males but included linear skin hyperpigmentation and a higher frequency of dental, retinal and cortical brain anomalies. Complications observed in our series included keloid scarring, digital fibromas, absent vaginal orifice, neuropathy, umbilical hernias, and talipes. Our analysis highlighted sex-specific differences in PHF6 variant types and locations. Affected males often have missense variants or small in-frame deletions while affected females tend to have truncating variants or large deletions/duplications. Missense variants were found in a minority of affected females and clustered in the highly constrained PHD2 domain of PHF6. We propose recommendations for the evaluation and management of BFLS patients. These results further delineate and extend the genetic and phenotypic spectrum of BFLS.


Subject(s)
Hypogonadism , Intellectual Disability , Mental Retardation, X-Linked , Male , Humans , Female , Intellectual Disability/genetics , Mental Retardation, X-Linked/genetics , Hypogonadism/genetics , Hypogonadism/complications , Hypogonadism/diagnosis , Obesity/genetics
3.
Eur Urol ; 78(4): 494-497, 2020 10.
Article in English | MEDLINE | ID: mdl-32532514

ABSTRACT

A BRCA2 prostate cancer cluster region (PCCR) was recently proposed (c.7914 to 3') wherein pathogenic variants (PVs) are associated with higher prostate cancer (PCa) risk than PVs elsewhere in the BRCA2 gene. Using a prospective cohort study of 447 male BRCA2 PV carriers recruited in the UK and Ireland from 1998 to 2016, we estimated standardised incidence ratios (SIRs) compared with population incidences and assessed variation in risk by PV location. Carriers of PVs in the PCCR had a PCa SIR of 8.33 (95% confidence interval [CI] 4.46-15.6) and were at a higher risk of PCa than carriers of other BRCA2 PVs (SIR = 3.31, 95% CI 1.97-5.57; hazard ratio = 2.34, 95% CI 1.09-5.03). PCCR PV carriers had an estimated cumulative PCa risk of 44% (95% CI 23-72%) by the age of 75 yr and 78% (95% CI 54-94%) by the age of 85 yr. Our results corroborate the existence of a PCCR in BRCA2 in a prospective cohort. PATIENT SUMMARY: In this report, we investigated whether the risk of prostate cancer for men with a harmful mutation in the BRCA2 gene differs based on where in the gene the mutation is located. We found that men with mutations in one region of BRCA2 had a higher risk of prostate cancer than men with mutations elsewhere in the gene.


Subject(s)
Genes, BRCA1 , Prostatic Neoplasms/genetics , Aged , Aged, 80 and over , Cohort Studies , Humans , Incidence , Male , Middle Aged , Mutation , Prospective Studies , Prostatic Neoplasms/epidemiology , Risk Assessment
4.
Eur Urol ; 77(1): 24-35, 2020 01.
Article in English | MEDLINE | ID: mdl-31495749

ABSTRACT

BACKGROUND: BRCA1 and BRCA2 mutations have been associated with prostate cancer (PCa) risk but a wide range of risk estimates have been reported that are based on retrospective studies. OBJECTIVE: To estimate relative and absolute PCa risks associated with BRCA1/2 mutations and to assess risk modification by age, family history, and mutation location. DESIGN, SETTING, AND PARTICIPANTS: This was a prospective cohort study of male BRCA1 (n = 376) and BRCA2 carriers (n = 447) identified in clinical genetics centres in the UK and Ireland (median follow-up 5.9 and 5.3 yr, respectively). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Standardised incidence/mortality ratios (SIRs/SMRs) relative to population incidences or mortality rates, absolute risks, and hazard ratios (HRs) were estimated using cohort and survival analysis methods. RESULTS AND LIMITATIONS: Sixteen BRCA1 and 26 BRCA2 carriers were diagnosed with PCa during follow-up. BRCA2 carriers had an SIR of 4.45 (95% confidence interval [CI] 2.99-6.61) and absolute PCa risk of 27% (95% CI 17-41%) and 60% (95% CI 43-78%) by ages 75 and 85 yr, respectively. For BRCA1 carriers, the overall SIR was 2.35 (95% CI 1.43-3.88); the corresponding SIR at age <65 yr was 3.57 (95% CI 1.68-7.58). However, the BRCA1 SIR varied between 0.74 and 2.83 in sensitivity analyses to assess potential screening effects. PCa risk for BRCA2 carriers increased with family history (HR per affected relative 1.68, 95% CI 0.99-2.85). BRCA2 mutations in the region bounded by positions c.2831 and c.6401 were associated with an SIR of 2.46 (95% CI 1.07-5.64) compared to population incidences, corresponding to lower PCa risk (HR 0.37, 95% CI 0.14-0.96) than for mutations outside the region. BRCA2 carriers had a stronger association with Gleason score ≥7 (SIR 5.07, 95% CI 3.20-8.02) than Gleason score ≤6 PCa (SIR 3.03, 95% CI 1.24-7.44), and a higher risk of death from PCa (SMR 3.85, 95% CI 1.44-10.3). Limitations include potential screening effects for these known mutation carriers; however, the BRCA2 results were robust to multiple sensitivity analyses. CONCLUSIONS: The results substantiate PCa risk patterns indicated by retrospective analyses for BRCA2 carriers, including further evidence of association with aggressive PCa, and give some support for a weaker association in BRCA1 carriers. PATIENT SUMMARY: In this study we followed unaffected men known to carry mutations in the BRCA1 and BRCA2 genes to investigate whether they are at higher risk of developing prostate cancer compared to the general population. We found that carriers of BRCA2 mutations have a high risk of developing prostate cancer, particularly more aggressive prostate cancer, and that this risk varies by family history of prostate cancer and the location of the mutation within the gene.


Subject(s)
Genes, BRCA1 , Genes, BRCA2 , Mutation , Prostatic Neoplasms/epidemiology , Prostatic Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Cohort Studies , Humans , Male , Middle Aged , Prospective Studies , Risk , Risk Assessment , Young Adult
5.
Genet Med ; 20(12): 1575-1582, 2018 12.
Article in English | MEDLINE | ID: mdl-29565421

ABSTRACT

PURPOSE: BRCA1/BRCA2 predictive test negatives are proven noncarriers of a BRCA1/BRCA2 mutation that is carried by their relatives. The risk of developing breast cancer (BC) or epithelial ovarian cancer (EOC) in these women is uncertain. The study aimed to estimate risks of invasive BC and EOC in a large cohort of BRCA1/BRCA2 predictive test negatives. METHODS: We used cohort analysis to estimate incidences, cumulative risks, and standardized incidence ratios (SIRs). RESULTS: A total of 1,895 unaffected women were eligible for inclusion in the BC risk analysis and 1,736 in the EOC risk analysis. There were 23 incident invasive BCs and 2 EOCs. The cumulative risk of invasive BC was 9.4% (95% confidence interval (CI) 5.9-15%) by age 85 years and the corresponding risk of EOC was 0.6% (95% CI 0.2-2.6%). The SIR for invasive BC was 0.93 (95% CI 0.62-1.40) in the overall cohort, 0.85 (95% CI 0.48-1.50) in noncarriers from BRCA1 families, and 1.03 (95% CI 0.57-1.87) in noncarriers from BRCA2 families. The SIR for EOC was 0.79 (95% CI 0.20-3.17) in the overall cohort. CONCLUSION: Our results did not provide evidence for elevated risks of invasive BC or EOC in BRCA1/BRCA2 predictive test negatives.


Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/genetics , Ovarian Neoplasms/genetics , Adult , Aged , Breast Neoplasms/diagnosis , Breast Neoplasms/epidemiology , Female , Genetic Predisposition to Disease , Germ-Line Mutation , Humans , Middle Aged , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/epidemiology , Risk Assessment , Risk Factors
6.
Hum Mutat ; 34(11): 1519-28, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23929686

ABSTRACT

De novo germline variants in several components of the SWI/SNF-like BAF complex can cause Coffin-Siris syndrome (CSS), Nicolaides-Baraitser syndrome (NCBRS), and nonsyndromic intellectual disability. We screened 63 patients with a clinical diagnosis of CSS for these genes (ARID1A, ARID1B, SMARCA2, SMARCA4, SMARCB1, and SMARCE1) and identified pathogenic variants in 45 (71%) patients. We found a high proportion of variants in ARID1B (68%). All four pathogenic variants in ARID1A appeared to be mosaic. By using all variants from the Exome Variant Server as test data, we were able to classify variants in ARID1A, ARID1B, and SMARCB1 reliably as being pathogenic or nonpathogenic. For SMARCA2, SMARCA4, and SMARCE1 several variants in the EVS remained unclassified, underlining the importance of parental testing. We have entered all variant and clinical information in LOVD-powered databases to facilitate further genotype-phenotype correlations, as these will become increasingly important because of the uptake of targeted and untargeted next generation sequencing in diagnostics. The emerging phenotype-genotype correlation is that SMARCB1 patients have the most marked physical phenotype and severe cognitive and growth delay. The variability in phenotype seems most marked in ARID1A and ARID1B patients. Distal limbs anomalies are most marked in ARID1A patients and least in SMARCB1 patients. Numbers are small however, and larger series are needed to confirm this correlation.


Subject(s)
Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Face/abnormalities , Genetic Association Studies , Hand Deformities, Congenital/diagnosis , Hand Deformities, Congenital/genetics , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Micrognathism/diagnosis , Micrognathism/genetics , Multiprotein Complexes/genetics , Neck/abnormalities , Chromosomal Proteins, Non-Histone/genetics , DNA Helicases/genetics , DNA-Binding Proteins/genetics , Exons , Facies , Gene Order , Humans , Nuclear Proteins/genetics , Phenotype , SMARCB1 Protein , Transcription Factors/genetics
7.
Nat Genet ; 43(12): 1189-92, 2011 Nov 20.
Article in English | MEDLINE | ID: mdl-22101682

ABSTRACT

Infantile myopathies with diaphragmatic paralysis are genetically heterogeneous, and clinical symptoms do not assist in differentiating between them. We used phased haplotype analysis with subsequent targeted exome sequencing to identify MEGF10 mutations in a previously unidentified type of infantile myopathy with diaphragmatic weakness, areflexia, respiratory distress and dysphagia. MEGF10 is highly expressed in activated satellite cells and regulates their proliferation as well as their differentiation and fusion into multinucleated myofibers, which are greatly reduced in muscle from individuals with early onset myopathy, areflexia, respiratory distress and dysphagia.


Subject(s)
Abnormalities, Multiple/genetics , Deglutition Disorders/genetics , Membrane Proteins/genetics , Muscular Diseases/genetics , Respiratory Distress Syndrome, Newborn/genetics , Satellite Cells, Skeletal Muscle/metabolism , Adolescent , Child , Child, Preschool , Consanguinity , Deltoid Muscle/pathology , Female , Frameshift Mutation , Genetic Association Studies , Heredity , Humans , INDEL Mutation , Infant , Infant, Newborn , Male , Muscle Development/genetics , Mutation, Missense , Pedigree , Sequence Analysis, DNA
8.
PLoS Genet ; 7(4): e1002050, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21533187

ABSTRACT

Metachondromatosis (MC) is a rare, autosomal dominant, incompletely penetrant combined exostosis and enchondromatosis tumor syndrome. MC is clinically distinct from other multiple exostosis or multiple enchondromatosis syndromes and is unlinked to EXT1 and EXT2, the genes responsible for autosomal dominant multiple osteochondromas (MO). To identify a gene for MC, we performed linkage analysis with high-density SNP arrays in a single family, used a targeted array to capture exons and promoter sequences from the linked interval in 16 participants from 11 MC families, and sequenced the captured DNA using high-throughput parallel sequencing technologies. DNA capture and parallel sequencing identified heterozygous putative loss-of-function mutations in PTPN11 in 4 of the 11 families. Sanger sequence analysis of PTPN11 coding regions in a total of 17 MC families identified mutations in 10 of them (5 frameshift, 2 nonsense, and 3 splice-site mutations). Copy number analysis of sequencing reads from a second targeted capture that included the entire PTPN11 gene identified an additional family with a 15 kb deletion spanning exon 7 of PTPN11. Microdissected MC lesions from two patients with PTPN11 mutations demonstrated loss-of-heterozygosity for the wild-type allele. We next sequenced PTPN11 in DNA samples from 54 patients with the multiple enchondromatosis disorders Ollier disease or Maffucci syndrome, but found no coding sequence PTPN11 mutations. We conclude that heterozygous loss-of-function mutations in PTPN11 are a frequent cause of MC, that lesions in patients with MC appear to arise following a "second hit," that MC may be locus heterogeneous since 1 familial and 5 sporadically occurring cases lacked obvious disease-causing PTPN11 mutations, and that PTPN11 mutations are not a common cause of Ollier disease or Maffucci syndrome.


Subject(s)
Enchondromatosis/genetics , Exostoses, Multiple Hereditary/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Chromosomes, Human/genetics , DNA Copy Number Variations , Enchondromatosis/pathology , Exons , Gene Deletion , Genetic Linkage , High-Throughput Nucleotide Sequencing , Humans , Loss of Heterozygosity , Mutation , Pedigree , Polymorphism, Single Nucleotide , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...