Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 131(22): 220405, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38101369

ABSTRACT

In nanoscale systems coupled to finite-size reservoirs, the reservoir temperature may fluctuate due to heat exchange between the system and the reservoirs. To date, a stochastic thermodynamic analysis of heat, work, and entropy production in such systems is, however, missing. Here we fill this gap by analyzing a single-level quantum dot tunnel coupled to a finite-size electronic reservoir. The system dynamics is described by a Markovian master equation, depending on the fluctuating temperature of the reservoir. Based on a fluctuation theorem, we identify the appropriate entropy production that results in a thermodynamically consistent statistical description. We illustrate our results by analyzing the work production for a finite-size reservoir Szilard engine.

2.
Phys Rev E ; 107(5): L052104, 2023 May.
Article in English | MEDLINE | ID: mdl-37329008

ABSTRACT

We theoretically investigate the extractable work in single molecule unfolding-folding experiments with applied feedback. Using a simple two-state model, we obtain a description of the full work distribution from discrete to continuous feedback. The effect of the feedback is captured by a detailed fluctuation theorem, accounting for the information aquired. We find analytical expressions for the average work extraction as well as an experimentally measurable bound thereof, which becomes tight in the continuous feedback limit. We further determine the parameters for maximal power or rate of work extraction. Although our two-state model only depends on a single effective transition rate, we find qualitative agreement with Monte Carlo simulations of DNA hairpin unfolding-folding dynamics.


Subject(s)
Protein Folding , Feedback , Biophysical Phenomena , Thermodynamics
3.
Phys Rev Lett ; 129(5): 050401, 2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35960579

ABSTRACT

Measurement and feedback control are essential features of quantum science, with applications ranging from quantum technology protocols to information-to-work conversion in quantum thermodynamics. Theoretical descriptions of feedback control are typically given in terms of stochastic equations requiring numerical solutions, or are limited to linear feedback protocols. Here we present a formalism for continuous quantum measurement and feedback, both linear and nonlinear. Our main result is a quantum Fokker-Planck master equation describing the joint dynamics of a quantum system and a detector with finite bandwidth. For fast measurements, we derive a Markovian master equation for the system alone, amenable to analytical treatment. We illustrate our formalism by investigating two basic information engines, one quantum and one classical.

4.
Phys Rev E ; 104(1): L012103, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34412265

ABSTRACT

Nanoscale heat engines are subject to large fluctuations which affect their precision. The thermodynamic uncertainty relation (TUR) provides a trade-off between output power, fluctuations, and entropic cost. This trade-off may be overcome by systems exhibiting quantum coherence. This Letter provides a study of the TUR in a prototypical quantum heat engine, the Scovil-Schulz-DuBois maser. Comparison with a classical reference system allows us to determine the effect of quantum coherence on the performance of the heat engine. We identify analytically regions where coherence suppresses fluctuations, implying a quantum advantage, as well as regions where fluctuations are enhanced by coherence. This quantum effect cannot be anticipated from the off-diagonal elements of the density matrix. Because the fluctuations are not encoded in the steady state alone, TUR violations are a consequence of coherence that goes beyond steady-state coherence. While the system violates the conventional TUR, it adheres to a recent formulation of a quantum TUR. We further show that parameters where the engine operates close to the conventional limit are prevalent and TUR violations in the quantum model are not uncommon.

5.
Nat Commun ; 12(1): 5130, 2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34446735

ABSTRACT

Converting incoming photons to electrical current is the key operation principle of optical photodetectors and it enables a host of emerging quantum information technologies. The leading approach for continuous and efficient detection in the optical domain builds on semiconductor photodiodes. However, there is a paucity of efficient and continuous photon detectors in the microwave regime, because photon energies are four to five orders of magnitude lower therein and conventional photodiodes do not have that sensitivity. Here we tackle this gap and demonstrate how microwave photons can be efficiently and continuously converted to electrical current in a high-quality, semiconducting nanowire double quantum dot resonantly coupled to a cavity. In particular, in our photodiode device, an absorbed photon gives rise to a single electron tunneling through the double dot, with a conversion efficiency reaching 6%.

6.
Phys Rev E ; 100(5-1): 052137, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31869995

ABSTRACT

Thermodynamic uncertainty relations quantify how the signal-to-noise ratio of a given observable is constrained by dissipation. Fluctuation relations generalize the second law of thermodynamics to stochastic processes. We show that any fluctuation relation directly implies a thermodynamic uncertainty relation, considerably increasing their range of applicability. In particular, we extend thermodynamic uncertainty relations to scenarios which include measurement and feedback. Since feedback generally breaks time-reversal invariance, the uncertainty relations involve quantities averaged over the forward and the backward experiment defined by the associated fluctuation relation. This implies that the signal-to-noise ratio of a given experiment can in principle become arbitrarily large as long as the corresponding backward experiment compensates, e.g., by being sufficiently noisy. We illustrate our results with the Szilard engine as well as work extraction by free energy reduction in a quantum dot.

7.
Phys Rev Lett ; 122(11): 110401, 2019 Mar 22.
Article in English | MEDLINE | ID: mdl-30951341

ABSTRACT

We introduce an experimental test for ruling out classical explanations for the statistics obtained when measuring arbitrary observables at arbitrary times using individual detectors. This test requires some trust in the measurements, represented by a few natural assumptions on the detectors. In quantum theory, the considered scenarios are well captured by von Neumann measurements. These can be described naturally in terms of the Keldysh quasiprobability distribution (KQPD), and the imprecision and backaction exerted by the measurement apparatus. We find that classical descriptions can be ruled out from measured data if and only if the KQPD exhibits negative values. We provide examples based on simulated data, considering the influence of a finite amount of statistics. In addition to providing an experimental tool for certifying nonclassicality, our results bestow an operational meaning upon the nonclassical nature of negative quasiprobability distributions such as the Wigner function and the full counting statistics.

8.
Entropy (Basel) ; 21(8)2019 Aug 08.
Article in English | MEDLINE | ID: mdl-33267490

ABSTRACT

The trade-off between large power output, high efficiency and small fluctuations in the operation of heat engines has recently received interest in the context of thermodynamic uncertainty relations (TURs). Here we provide a concrete illustration of this trade-off by theoretically investigating the operation of a quantum point contact (QPC) with an energy-dependent transmission function as a steady-state thermoelectric heat engine. As a starting point, we review and extend previous analysis of the power production and efficiency. Thereafter the power fluctuations and the bound jointly imposed on the power, efficiency, and fluctuations by the TURs are analyzed as additional performance quantifiers. We allow for arbitrary smoothness of the transmission probability of the QPC, which exhibits a close to step-like dependence in energy, and consider both the linear and the non-linear regime of operation. It is found that for a broad range of parameters, the power production reaches nearly its theoretical maximum value, with efficiencies more than half of the Carnot efficiency and at the same time with rather small fluctuations. Moreover, we show that by demanding a non-zero power production, in the linear regime a stronger TUR can be formulated in terms of the thermoelectric figure of merit. Interestingly, this bound holds also in a wide parameter regime beyond linear response for our QPC device.

9.
Phys Rev Lett ; 121(21): 210603, 2018 Nov 23.
Article in English | MEDLINE | ID: mdl-30517817

ABSTRACT

Fluctuation relations are powerful equalities that hold far from equilibrium. However, the standard approach to include measurement and feedback schemes may become inapplicable in certain situations, including continuous measurements, precise measurements of continuous variables, and feedback induced irreversibility. Here we overcome these shortcomings by providing a recipe for producing detailed fluctuation relations. Based on this recipe, we derive a fluctuation relation which holds for arbitrary measurement and feedback control. The key insight is that fluctuations inferable from the measurement outcomes may be suppressed by postselection. Our detailed fluctuation relation results in a stringent and experimentally accessible inequality on the extractable work, which is saturated when the full entropy production is inferable from the data.

SELECTION OF CITATIONS
SEARCH DETAIL
...