Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 292(32): 13122-13132, 2017 08 11.
Article in English | MEDLINE | ID: mdl-28623231

ABSTRACT

Cry6Aa1 is a Bacillus thuringiensis (Bt) toxin active against nematodes and corn rootworm insects. Its 3D molecular structure, which has been recently elucidated, is unique among those known for other Bt toxins. Typical three-domain Bt toxins permeabilize receptor-free planar lipid bilayers (PLBs) by forming pores at doses in the 1-50 µg/ml range. Solubilization and proteolytic activation are necessary steps for PLB permeabilization. In contrast to other Bt toxins, Cry6Aa1 formed pores in receptor-free bilayers at doses as low as 200 pg/ml in a wide range of pH (5.5-9.5) and without the need of protease treatment. When Cry6Aa1 was preincubated with Western corn rootworm (WCRW) midgut juice or trypsin, 100 fg/ml of the toxin was sufficient to form pores in PLBs. The overall biophysical properties of the pores were similar for all three forms of the toxin (native, midgut juice- and trypsin-treated), with conductances ranging from 28 to 689 pS, except for their ionic selectivity, which was slightly cationic for the native and midgut juice-treated Cry6Aa1, whereas dual selectivity (to cations or anions) was observed for the pores formed by the trypsin-treated toxin. Enrichment of PLBs with WCRW midgut brush-border membrane material resulted in a 2000-fold reduction of the amount of native Cry6Aa1 required to form pores and affected the biophysical properties of both the native and trypsin-treated forms of the toxin. These results indicate that, although Cry6Aa1 forms pores, the molecular determinants of its mode of action are significantly different from those reported for other Bt toxins.


Subject(s)
Antinematodal Agents/pharmacology , Bacillus thuringiensis/metabolism , Bacterial Proteins/pharmacology , Endotoxins/pharmacology , Hemolysin Proteins/pharmacology , Insecticides/pharmacology , Lipid Bilayers/chemistry , Activation, Metabolic , Animals , Antinematodal Agents/chemistry , Antinematodal Agents/metabolism , Bacillus thuringiensis Toxins , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Coleoptera/drug effects , Coleoptera/enzymology , Coleoptera/growth & development , Digestion , Endotoxins/genetics , Endotoxins/metabolism , Hemolysin Proteins/genetics , Hemolysin Proteins/metabolism , Hydrogen-Ion Concentration , Insect Proteins/metabolism , Insecticides/chemistry , Insecticides/metabolism , Kinetics , Larva/drug effects , Larva/enzymology , Larva/growth & development , Membrane Fusion/drug effects , Microvilli/chemistry , Microvilli/enzymology , Peptide Hydrolases/metabolism , Porosity/drug effects , Proteolysis , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology , Solubility
2.
Free Radic Biol Med ; 47(3): 275-82, 2009 Aug 01.
Article in English | MEDLINE | ID: mdl-19409486

ABSTRACT

Newborn infants are at risk for oxidative stress leading to metabolic syndrome features. Oxidative stress can be induced by oxidant load such as oxygen supplementation, peroxides from intravenous nutrition, or low antioxidant defenses. We hypothesize that a modulation of antioxidant defenses during the neonatal period, without external oxidant challenge, will have a long-term influence on energy metabolism. Guinea pigs were fed between their third and their seventh day of life a regular chow leading to "mature" antioxidant defenses or a deficient chow leading to lower antioxidant defenses. Between weeks 1 and 14, the animals were fed regular chow. The hepatic oxidized redox status of glutathione associated with the deficient diet (-221 +/- 2 vs -228 +/- 1 mV, p < 0.01) was maintained until 14 weeks. At 13-14 weeks, animals fed the deficient diet presented lower plasma TG (479 +/- 57 vs 853 +/- 32 microM, p < 0.01), lower blood glucose (5.8 +/- 0.3 vs 6.9 +/- 0.3 mM, p < 0.05), and better tolerance to glucose (p < 0.05). Blood glucose correlated negatively with the redox status (r2 = 0.47, p < 0.01). Low antioxidant defenses during the neonatal period induce a better energy substrate profile associated with an oxidized redox status later in life. These findings suggest being aware of negative consequences when adopting "aggressive" antioxidant therapies in newborn infants.


Subject(s)
Animals, Newborn , Food, Formulated , Glucose/metabolism , Liver/physiology , Metabolic Syndrome/metabolism , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Animals , Antioxidants/metabolism , Diet Therapy/trends , Dinoprost/analogs & derivatives , Dinoprost/metabolism , Gene Expression Regulation, Developmental , Glucose Tolerance Test , Glutathione/metabolism , Guinea Pigs , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lipid Metabolism , Metabolic Syndrome/blood , Metabolic Syndrome/diet therapy , Metabolic Syndrome/genetics , Oxidation-Reduction , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Time Factors , Triglycerides/blood
3.
Biochemistry ; 43(38): 12349-57, 2004 Sep 28.
Article in English | MEDLINE | ID: mdl-15379574

ABSTRACT

The binary Bacillus thuringiensis PS149B1 insecticidal crystal (Cry) protein is comprised of two components, Cry34Ab1, a 14-kDa protein, and Cry35Ab1, a 44-kDa protein, the combination of which forms a novel binary toxin active on western corn rootworm larvae. The permeabilizing behavior of the native binary toxin and its two individual components expressed as recombinant proteins was studied using calcein efflux determination in liposomes and by ion channel activity measurements in planar lipid bilayers (PLBs). Data obtained with solubilized native PS149B1 binary protein revealed it to be a pore-forming toxin that can permeabilize liposomes and form ion channels ( approximately 300-900 pS) in PLBs at pH 5.5 but not pH 9.0. The 14-kDa component of the toxin also formed ion channels ( approximately 15-300 pS) at pH 5.5 but did not insert easily in PLBs. While the 44-kDa moiety did seldomly form resolvable ion channels ( approximately 15-750 pS) in PLBs, it did destabilize the membranes. It showed pH-dependent truncation to a stable 40-kDa protein. The purified 40-kDa truncated product formed channels ( approximately 10-450 pS) in PLBs at pH 5.5. At that same pH, while a 3:1 molar mixture (14:44 kDa) of the individual components of the toxin induced channel activity that resembled that of the 14-kDa component alone, the 3:1 molar mixture of the 14-kDa component and 40-kDa truncated product induced channel activity ( approximately 20-800 pS) similar to that of PS149B1 in planar lipid bilayers. We conclude that the overall membrane permeabilization process of Cry34Ab1/Cry35Ab1 is a result of ion channel formation.


Subject(s)
Bacillus thuringiensis/chemistry , Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Coleoptera/metabolism , Coleoptera/microbiology , Endotoxins/metabolism , Ion Channels/metabolism , Lipid Bilayers/metabolism , Animals , Bacillus thuringiensis/genetics , Bacillus thuringiensis Toxins , Bacterial Proteins/chemistry , Bacterial Proteins/pharmacology , Bacterial Toxins/chemistry , Bacterial Toxins/pharmacology , Cell Membrane Permeability/drug effects , Electric Conductivity , Endotoxins/chemistry , Endotoxins/pharmacology , Fluoresceins/metabolism , Hemolysin Proteins , Hydrogen-Ion Concentration , Ion Channels/chemistry , Ion Transport/drug effects , Lipid Bilayers/chemistry , Liposomes/chemistry , Liposomes/metabolism , Peptide Fragments/genetics , Peptide Fragments/metabolism , Peptide Fragments/pharmacology , Protein Denaturation
4.
Mol Membr Biol ; 21(1): 67-74, 2004.
Article in English | MEDLINE | ID: mdl-14668140

ABSTRACT

Trypsin activation of Cry4B, a 130-kDa Bacillus thuringiensis (Bt) protein, produces a 65-kDa toxin active against mosquito larvae. The active toxin is made of two protease resistant-products of ca. 45 kDa and ca. 20 kDa. The cloned 21-kDa fragment consisting of the N-terminal region of the toxin was previously shown to be capable of permeabilizing liposomes. The present study was designed to test the following hypotheses: (1) Cry4B, like several other Bt toxins, is a channel-forming toxin in plannar lipid bilayers; and (2) the 21-kDa N-terminal region, which maps for the first five helices (alpha1-alpha5) of domain 1 in other Cry toxins, and which putatively shares a similar tri-dimensional structure, is sufficient to account for the ion channel activity of the whole toxin. Using circular dichroism spectroscopy and planar lipid bilayers, we showed that the 21-kDa polypeptide existed as an alpha-helical structure and that both Cry4B and its alpha1-alpha5 fragment formed ion channels of 248 +/- 44 pS and 207 +/- 23 pS, respectively. The channels were cation-selective with a potassium-to-chloride permeability ratio of 6.7 for Cry4B and 4.5 for its fragment. However, contrary to the full-length toxin, the alpha1-alpha5 region formed channels at low dose; they tended to remain locked in their open state and displayed flickering activity bouts. Thus, like the full-length toxin, the alpha1-alpha5 region is a functional channel former. A pH-dependent, yet undefined region of the toxin may be involved in regulating the channel properties.


Subject(s)
Bacillus thuringiensis/chemistry , Endotoxins/chemistry , Ion Channels/chemistry , Lipid Bilayers/chemistry , Recombinant Proteins/chemistry , Bacillus thuringiensis/genetics , Circular Dichroism , Electric Conductivity , Endotoxins/genetics , Endotoxins/isolation & purification , Escherichia coli/genetics , Recombinant Proteins/genetics
5.
Appl Environ Microbiol ; 68(1): 194-200, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11772627

ABSTRACT

We used site-directed mutagenesis to probe the function of four alternating arginines located at amino acid positions 525, 527, 529, and 531 in a highly conserved region of domain III in the Cry1Ac toxin of Bacillus thuringiensis. We created 10 mutants: eight single mutants, with each arginine replaced by either glycine (G) or aspartic acid (D), and two double mutants (R525G/R527G and R529G/R531G). In lawn assays of the 10 mutants with a cultured Choristoneura fumiferana insect cell line (Cf1), replacement of a single arginine by either glycine or aspartic acid at position 525 or 529 decreased toxicity 4- to 12-fold relative to native Cry1Ac toxin, whereas replacement at position 527 or 531 decreased toxicity only 3-fold. The reduction in toxicity seen with double mutants was 8-fold for R525G/R527G and 25-fold for R529G/R531G. Five of the mutants (R525G, R525D, R527G, R529D, and R525G/R527G) were tested in bioassays with Plutella xylostella larvae and ion channel formation in planar lipid bilayers. In the bioassays, R525D, R529D, and R525G/R527G showed reduced toxicity. In planar lipid bilayers, the conductance and the selectivity of the mutants were similar to those of native Cry1Ac. Toxins with alteration at position 527 or 529 tended to remain in their subconducting states rather than the maximally conducting state. Our results suggest that the primary role of this conserved region is to maintain both the structural integrity of the native toxin and the full functionality of the formed membrane pore.


Subject(s)
Bacillus thuringiensis/genetics , Bacterial Proteins/genetics , Bacterial Proteins/toxicity , Bacterial Toxins , Endotoxins/genetics , Endotoxins/toxicity , Mutagenesis, Site-Directed , Amino Acid Sequence , Animals , Arginine , Bacillus thuringiensis/metabolism , Bacillus thuringiensis Toxins , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Cells, Cultured , Conserved Sequence , Endotoxins/chemistry , Endotoxins/metabolism , Hemolysin Proteins , Insecta , Ion Channels/drug effects , Larva/drug effects , Molecular Sequence Data , Moths/drug effects , Moths/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...