Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroscience ; 546: 53-62, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38522662

ABSTRACT

Aging is characterized by a decline in physical and cognitive functions, often resulting in decreased quality of life. Physical activity has been suggested to potentially slow down various aspects of the aging process, a theory that has been supported by studies of Masters Athletes (MA). For example, MA usually have better cognitive and physical functions than age-matched sedentary and healthy older adults (OA), making them a valuable model to gain insights into mechanisms that promote physical and cognitive function with aging. The purpose of this study was to identify differences in resting-state functional connectivity (rs-FC) of motor and cognitive regions between MA and OA and determine if these differences in the resting brain are associated with differences in cognitive and physical performance between groups. Fifteen MA (9 males) and 12 age-matched OA (six males) were included. rs-FC images were compared to identify significant between-groups differences in brain connectivity. There was higher connectivity between the cognitive and motor networks for the OA group, whereas the MA group had stronger connectivity between different regions within the same network, both for the cognitive and the motor networks. These results are in line with the literature suggesting that aging reduces the segregation between functional networks and causes regions within the same network to be less strongly connected. High-level physical activity practiced by the MA most likely contributes to attenuating aging-related changes in brain functional connectivity, preserving clearer boundaries between different functional networks, which may ultimately favor maintenance of efficient cognitive and sensorimotor processing.


Subject(s)
Athletes , Brain , Cognition , Magnetic Resonance Imaging , Rest , Humans , Male , Aged , Female , Cognition/physiology , Middle Aged , Rest/physiology , Brain/physiology , Brain/diagnostic imaging , Aging/physiology , Neural Pathways/physiology , Neural Pathways/diagnostic imaging , Brain Mapping
2.
Neuroscience ; 540: 77-86, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38246474

ABSTRACT

Limb immobilization is known to cause significant decreases in muscle strength and muscle mass as early as two days following the onset of immobilization. However, the decline in strength surpasses the decline in muscle mass, suggesting that factors in addition to muscle loss, such as neuroplasticity, contribute to the decrease in force production. However, little is known regarding immobilization-induced neural changes, although sensorimotor regions seem to be the most affected. The present study aimed to determine whether brain functional organization is altered following 14 days of unilateral elbow immobilization. Functional organization was quantified using resting-state functional connectivity, a measure of the synchronicity of the spontaneous discharge of different brain regions at rest. Data was obtained from twelve healthy young females before and after completing the immobilization period. A seed-to-voxel analysis was performed using seeds associated with cortical, subcortical, and cerebellar sensorimotor regions of the brain. The results showed changes predominantly involving cerebellar connectivity. For example, the immobilization period caused a decrease in connectivity between the motor cerebellar region of the immobilized arm and the left temporal lobe, and an increase between the same cerebellar region and the supplementary motor area. Overall, changes in connectivity occurred in regions typically associated with error detection and motor learning, suggesting a potential functional reorganization of the brain within 14 days of elbow immobilization.


Subject(s)
Brain Mapping , Motor Cortex , Humans , Female , Elbow , Brain/diagnostic imaging , Brain/physiology , Motor Cortex/physiology , Cerebellum , Neural Pathways/physiology , Magnetic Resonance Imaging
3.
Phys Ther ; 104(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37354450

ABSTRACT

OBJECTIVES: The purpose of this trial is to (1) determine the best exercise modality to improve sleep quality and sleep architecture in people with Parkinson disease (PD); (2) investigate whether exercise-induced improvements in sleep mediate enhancements in motor and cognitive function as well as other non-motor symptoms of PD; and (3) explore if changes in systemic inflammation after exercise mediate improvements in sleep. METHODS: This is a multi-site, superiority, single-blinded randomized controlled trial. One hundred fifty persons with PD and sleep problems will be recruited and randomly allocated into 4 intervention arms. Participants will be allocated into 12 weeks of either cardiovascular training, resistance training, multimodal training, or a waiting list control intervention. Assessments will be conducted at baseline, immediately after each intervention, and 8 weeks after each intervention by blinded assessors. Objective sleep quality and sleep architecture will be measured with polysomnography and electroencephalography. Motor and cognitive function will be assessed with the Unified PD Rating Scale and the Scale for Outcomes in PD-Cognition, respectively. Subjective sleep quality, fatigue, psychosocial functioning, and quality of life will be assessed with questionnaires. The concentration of inflammatory biomarkers in blood serum will be assessed with enzyme-linked immunosorbent assays. IMPACT: This study will investigate the effect of different types of exercise on sleep quality and architecture in PD, exploring interactions between changes in sleep quality and architecture with motor and cognitive function and other non-motor symptoms of the disease as well as mechanistic interactions between systemic inflammation and sleep. The results will provide important practical information to guide physical therapists and other rehabilitation professionals in the selection of exercise and the design of more personalized exercise-based treatments aimed at optimizing sleep, motor, and cognitive function in people with PD.


Subject(s)
Parkinson Disease , Quality of Life , Humans , Sleep Quality , Exercise Therapy/methods , Inflammation , Randomized Controlled Trials as Topic
4.
J Neurol Sci ; 452: 120770, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37633012

ABSTRACT

BACKGROUND The posterior parietal cortex (PPC) is a key brain area for visuospatial processing and locomotion. It has been repetitively shown to be involved in the neural correlates of freezing of gait (FOG), a common symptom of Parkinson's disease (PD). However, current neuroimaging modalities do not allow to precisely determine the role of the PPC during real FOG episodes. OBJECTIVES The purpose of this study was to modulate the PPC cortical excitability using repetitive transcranial magnetic stimulation (rTMS) to determine whether the PPC contributes to FOG or compensates for dysfunctional neural networks to reduce FOG. METHODS Fourteen participants with PD who experience freezing took part in a proof of principle study consisting of three experimental sessions targeting the PPC with inhibitory, excitatory, and sham rTMS. Objective FOG outcomes and cortical excitability measurements were acquired before and after each stimulation protocol. RESULTS Increasing PPC excitability resulted in significantly fewer freezing episodes and percent time frozen during a FOG-provoking task. This reduction in FOG most likely emerged from the trend in PPC inhibiting the lower leg motor cortex excitability. CONCLUSION Our results suggest that the recruitment of the PPC is linked to less FOG, providing support for the beneficial role of the PPC upregulation in preventing FOG. This could potentially be linked to a reduction of the cortical input burden on the basal ganglia prior to FOG. Excitatory rTMS interventions targeting the PPC may have the potential to reduce FOG.


Subject(s)
Gait Disorders, Neurologic , Parkinson Disease , Humans , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , Parkinson Disease/therapy , Up-Regulation , Gait Disorders, Neurologic/diagnostic imaging , Gait Disorders, Neurologic/etiology , Gait Disorders, Neurologic/therapy , Parietal Lobe/diagnostic imaging , Gait
5.
Eur J Neurosci ; 57(1): 163-177, 2023 01.
Article in English | MEDLINE | ID: mdl-36251568

ABSTRACT

Freezing of gait (FOG) is a debilitating motor symptom of Parkinson's disease (PD). Although PD dopaminergic medication (L-DOPA) seems to generally reduce FOG severity, its effect on neural mechanisms of FOG remains to be determined. The purpose of this study was to quantify the effect of L-DOPA on brain resting-state functional connectivity in individuals with FOG. Functional magnetic resonance imaging was acquired at rest in 30 individuals living with PD (15 freezers) in the ON- and OFF- medication state. A seed-to-voxel analysis was performed with seeds in the bilateral basal ganglia nuclei, the thalamus and the mesencephalic locomotor region. In freezers, medication-state contrasts revealed numerous changes in resting-state functional connectivity, not modulated by L-DOPA in non-freezers. In freezers, L-DOPA increased the functional connectivity between the seeds and regions including the posterior parietal, the posterior cingulate, the motor and the medial prefrontal cortices. Comparisons with non-freezers revealed that L-DOPA generally normalizes brain functional connectivity to non-freezers levels but can also increase functional connectivity, possibly compensating for dysfunctional networks in freezers. Our findings suggest that L-DOPA could contribute to a better sensorimotor, attentional, response inhibition and limbic processing to prevent FOG when triggers are encountered but could also contribute to FOG by interfering with the processing capacity of the striatum. This study shows that levodopa taken to control PD symptoms induces changes in functional connectivity at rest, in freezers only. Increases (green) in functional connectivity of GPe, GPi, putamen and thalamus with cognitive, sensorimotor and limbic cortical regions of the Interference model (blue) was observed. Our results suggest that levodopa can normalize connections similar to non-freezers or increases connectivity to compensate for dysfunctional networks.


Subject(s)
Gait Disorders, Neurologic , Parkinson Disease , Humans , Levodopa/pharmacology , Levodopa/therapeutic use , Parkinson Disease/diagnostic imaging , Parkinson Disease/drug therapy , Parkinson Disease/pathology , Gait Disorders, Neurologic/drug therapy , Gait Disorders, Neurologic/etiology , Brain , Gait , Magnetic Resonance Imaging
6.
Neuroscience ; 468: 366-376, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34102265

ABSTRACT

Freezing of gait (FOG) is a common motor symptom in Parkinson's disease (PD). Although FOG reduces quality of life, affects mobility and increases the risk of falls, there are little to no effective treatments to alleviate FOG. Non-invasive brain stimulation (NIBS) has recently yielded attention as a potential treatment to reduce FOG symptoms however, stimulation parameters and protocols remain inconsistent and require further research. Specifically, targets for stimulation require careful review. Thus, with current neuroimaging and neuro-electrophysiological evidence, we consider potential cortical targets thought to be involved in the pathophysiology of FOG according to the Interference model, and within reach of NIBS. We note that the primary motor cortex, the supplementary motor area and the dorsolateral prefrontal cortex have already drawn attention as NIBS targets for FOG, but based on neuroimaging evidence the premotor cortex, the medial prefrontal cortex, the cerebellum, and more particularly, the posterior parietal cortex should be considered as potential regions for stimulation. We also discuss different methodological considerations, such as stimulation type, medication state, and hemisphere to target, and future perspectives for NIBS protocols in FOG.


Subject(s)
Gait Disorders, Neurologic , Motor Cortex , Parkinson Disease , Gait , Gait Disorders, Neurologic/etiology , Gait Disorders, Neurologic/therapy , Humans , Parkinson Disease/complications , Parkinson Disease/therapy , Quality of Life , Transcranial Magnetic Stimulation
7.
Neuroscience ; 418: 311-317, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31479699

ABSTRACT

Freezing of gait (FOG) is a common motor symptom in Parkinson's disease (PD) thought to arise from the dysfunctional cortico-basal ganglia-thalamic circuity. The purpose of this study was to assess the changes in brain resting-state functional connectivity (rs-FC) of subcortical structures comprising the cortico-basal ganglia-thalamic circuity in individuals with PD with and without FOG. Resting-state functional magnetic resonance imaging was acquired in 27 individuals with idiopathic PD (14 with FOG and 13 without FOG). A seed-to-voxel analysis was performed with the seeds in the bilateral basal ganglia nuclei, thalamus, and pedunculopontine nucleus. Between-group differences in rs-FC revealed that the bilateral thalamus and globus pallidus external were significantly more connected with visual areas in PD with FOG compared to PD without FOG. In addition, PD with FOG had increased connectivity between the left putamen and retrosplenial cortex as well as with the cerebellum. Our findings suggest an increased connectivity at rest of subcortical and cortical regions involved in sensory and visuospatial processing that may be compensating for sensorimotor deficits in FOG. This increased connectivity may contribute to the hypothesized overload in the cortico-basal ganglia-thalamic circuity processing capacity, which may ultimately result in FOG occurrence.


Subject(s)
Brain Mapping , Gait Disorders, Neurologic/physiopathology , Neural Pathways/physiopathology , Parkinson Disease/physiopathology , Aged , Brain Mapping/methods , Female , Gait Disorders, Neurologic/pathology , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Male , Middle Aged , Neural Pathways/pathology , Parkinson Disease/pathology , Pedunculopontine Tegmental Nucleus/pathology , Pedunculopontine Tegmental Nucleus/physiopathology , Severity of Illness Index
8.
J Nucl Med ; 60(5): 671-676, 2019 05.
Article in English | MEDLINE | ID: mdl-30315142

ABSTRACT

Freezing of gait (FOG) in Parkinson disease (PD) often occurs during steering of gait (i.e., complex gait), which is thought to arise from executive dysfunction. Our aim was to test whether cognitive corticobasal ganglia-thalamocortical circuitry is impaired and whether alternate neural circuits are used for complex gait in PD with FOG. Methods: Eighteen individuals with idiopathic PD in the off-medication state, 9 with FOG (aged 68 ± 6 y) and 9 without FOG (aged 65 ± 5 y), were included. PET was used to measure cerebral glucose metabolism during 2 gait tasks, steering and straight walking, performed during the radiotracer uptake period. Results: During steering, there was a reduced change in cerebral glucose metabolism within the cognitive corticothalamic circuit. More specifically, those with FOG had less activation of the posterior parietal cortex, less deactivation of the dorsolateral prefrontal cortex and thalamus, and increased activation in the supplementary motor area. Interestingly, activity in the dorsolateral prefrontal cortex correlated with gait impairment (i.e., reduced stride length) in the FOG group. Conclusion: These results demonstrate decreased parietal control and an alternate control mechanism mediated by prefrontal and supplementary motor areas in PD with FOG.


Subject(s)
Brain/metabolism , Gait Disorders, Neurologic/complications , Gait Disorders, Neurologic/metabolism , Parkinson Disease/complications , Aged , Female , Fluorodeoxyglucose F18 , Gait Disorders, Neurologic/diagnostic imaging , Gait Disorders, Neurologic/drug therapy , Humans , Male , Positron-Emission Tomography , Treatment Outcome
9.
Gait Posture ; 57: 40-45, 2017 09.
Article in English | MEDLINE | ID: mdl-28570861

ABSTRACT

Researchers looking at the effects of performing a concurrent cognitive task on postural control in young and older adults using traditional center-of-pressure measures and complexity measures found discordant results. Results of experiments showing improvements of stability have suggested the use of strategies such as automatization of postural control or stiffening strategy. This experiment aimed to confirm in healthy young and older adults that performing a cognitive task while standing leads to improvements that are due to automaticity of sway by using sample entropy. Twenty-one young adults and twenty-five older adults were asked to stand on a force platform while performing a cognitive task. There were four cognitive tasks: simple reaction time, go/no-go reaction time, equation and occurrence of a digit in a number sequence. Results demonstrated decreased sway area and variability as well as increased sample entropy for both groups when performing a cognitive task. Results suggest that performing a concurrent cognitive task promotes the adoption of an automatic postural control in young and older adults as evidenced by an increased postural stability and postural sway complexity.


Subject(s)
Attention , Cognition , Postural Balance/physiology , Adult , Age Factors , Aged , Entropy , Female , Humans , Male , Reaction Time , Task Performance and Analysis , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...