Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Nanoscale ; 16(23): 11223-11231, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38775652

ABSTRACT

Bismuth iodide perovskite nanocrystals are considered a viable alternative to the Pb halide ones due to their reduced toxicity and increased stability. However, it is still challenging to fabricate nanocrystals with a small and controlled size, and their electronic properties are not well understood. Here, we propose the growth of Bi iodide perovskite nanocrystals using different mesoporous silica with ordered pores of controlled diameter as templates. We obtain a series of confined Cs3Bi2I9 and MA3Bi2I9 perovskites with diameters of 2.3, 3.7, 7.4, and 9.2 nm, and precise size control. The complex absorption spectra of the encapsulated perovskites cannot be properly fitted using classical Tauc or Elliott formalisms. By fitting the spectra with a modified Elliott formula, the bandgap values and exciton binding energies (70-400 meV) could be extracted. The calculated bandgaps scale with the pore sizes. Using a combined experimental and theoretical approach, we demonstrate for the first time quantum confinement in 0D Bi-iodide perovskite nanocrystals.

2.
Plant Cell Physiol ; 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37944070

ABSTRACT

An effect of climate change is the expansion of drylands in temperate regions, predicted to affect microbial biodiversity. Photosynthetic organisms being at the base of ecosystem's trophic networks, we compared an endolithic desiccation-tolerant Chroococcidiopsis cyanobacteria isolated from gypsum rocks in the Atacama Desert, with a freshwater desiccation-sensitive Synechocystis. We sought whether some acclimation traits in response to desiccation and temperature variations were shared, to evaluate the potential of temperate species to possibly become resilient to future arid conditions. When temperature varies, Synechocystis tunes the acyl composition of its lipids, via a homeoviscuous acclimation mechanism known to adjust membrane fluidity, whereas no such change occurs in Chroococcidiopsis. Vice versa, a combined study of photosynthesis and pigment content shows that Chroococcidiopsis remodels its photosynthesis components and keeps an optimal photosynthetic capacity at all temperatures, whereas Synechocystis is unable to such adjustment. Upon desiccation on a gypsum surface, Synechocystis is rapidly unable to revive, whereas Chroococcidiopsis is capable to recover after three weeks. Using X-ray diffraction, we found no evidence that Chroococcidiopsis could use water extracted from gypsum crystal in such conditions, as a surrogate of missing water. The sulfolipid sulfoquinovosyldiacylglycerol becomes the prominent membrane lipid in both dehydrated cyanobacteria, highlighting an overlooked function for this lipid. Chroococcidiopsis keeps a minimal level of monogalactosyldiacylglycerol, which may be essential for the recovery process. Results support that two independent adaptation strategies have evolved in these species to cope with temperature and desiccation increase, and suggest some possible scenarios for microbial biodiversity change triggered by climate change.

3.
ACS Appl Mater Interfaces ; 15(39): 45701-45712, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37737728

ABSTRACT

Electrical stimulation has been used successfully for several decades for the treatment of neurodegenerative disorders, including motor disorders, pain, and psychiatric disorders. These technologies typically rely on the modulation of neural activity through the focused delivery of electrical pulses. Recent research, however, has shown that electrically triggered neuromodulation can be further enhanced when coupled with optical stimulation, an approach that can benefit from the development of novel electrode materials that combine transparency with excellent electrochemical and biological performance. In this study, we describe an electrochemically modified, nanostructured indium tin oxide/poly(ethylene terephthalate) (ITO/PET) surface as a flexible, transparent, and cytocompatible electrode material. Electrochemical oxidation and reduction of ITO/PET electrodes in the presence of an ionic liquid based on d-glucopyranoside and bistriflamide units were performed, and the electrochemical behavior, conductivity, capacitance, charge transport processes, surface morphology, optical properties, and cytocompatibility were assessed in vitro. It has been shown that under selected conditions, electrochemically modified ITO/PET films remained transparent and highly conductive and were able to enhance neural cell survival and neurite outgrowth. Consequently, electrochemical modification of ITO/PET electrodes in the presence of an ionic liquid is introduced as an effective approach for tailoring the properties of ITO for advanced bio-optoelectronic applications.


Subject(s)
Ionic Liquids , Nanostructures , Humans , Oxidation-Reduction , Tin Compounds/chemistry
4.
J Phys Chem Lett ; 13(20): 4495-4500, 2022 May 26.
Article in English | MEDLINE | ID: mdl-35575469

ABSTRACT

B-site doping is an emerging strategy for tuning the emission wavelength of cesium lead halide ABX3 nanocrystals. We present a simple method for the postsynthetic doping of CsPbBr3 nanocrystals with aluminum at room temperature by exposing them to a solution of AlBr3 in dibromomethane. Despite the much smaller ionic radius of Al3+ compared to that of Pb2+, nominal doping levels in a range from 8.1% to 24.3% were obtained when increasing the Al/Pb feed ratio from 1 to 4.5. Al3+ introduction leads to a hypsochromic shift of the photoluminescence (PL) emission of the CsPbBr3 nanocrystals. The PL peak position is highly stable over at least 6 months and tunable in a range of 510 to 480 nm by increasing the doping level. Structural analyses revealed a linear correlation between the PL energy and the lattice parameter with a slope of -1.96 eV/Å.

5.
ACS Nano ; 16(6): 9819-9829, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35613437

ABSTRACT

Germanium is a promising active material for high energy density anodes in Li-ion batteries thanks to its good Li-ion conduction and mechanical properties. However, a deep understanding of the (de)lithiation mechanism of Ge requires advanced characterizations to correlate structural and chemical evolution during charge and discharge. Here we report a combined operando X-ray diffraction (XRD) and ex situ 7Li solid-state NMR investigation performed on crystalline germanium nanoparticles (c-Ge Nps) based anodes during partial and complete cycling at C/10 versus Li metal. High-resolution XRD data, acquired along three successive partial cycles, revealed the formation process of crystalline core-amorphous shell particles and their associated strain behavior, demonstrating the reversibility of the c-Ge lattice strain, unlike what is observed in the crystalline silicon nanoparticles. Moreover, the crystalline and amorphous lithiated phases formed during a complete lithiation cycle are identified. Amorphous Li7Ge3 and Li7Ge2 are formed successively, followed by the appearance of crystalline Li15Ge4 (c-Li15Ge4) at the end of lithiation. These results highlight the enhanced mechanical properties of germanium compared to silicon, which can mitigate pulverization and increase structural stability, in the perspective for developing high-performance anodes.

6.
Front Chem ; 10: 1058620, 2022.
Article in English | MEDLINE | ID: mdl-36605121

ABSTRACT

In-depth and reliable characterization of advanced nanoparticles is crucial for revealing the origin of their unique features and for designing novel functional materials with tailored properties. Due to their small size, characterization beyond nanometric resolution, notably, by transmission electron microscopy (TEM) and associated techniques, is essential to provide meaningful information. Nevertheless, nanoparticles, especially those containing volatile elements or organic components, are sensitive to radiation damage. Here, using CsPbBr3 perovskite nanocrystals as an example, strategies to preserve the native structure of radiation-sensitive nanocrystals in high-resolution electron microscopy studies are presented. Atomic-resolution images obtained using graphene support films allow for a clear comparison with simulation results, showing that most CsPbBr3 nanocrystals are orthorhombic. Low-dose TEM reveals faceted nanocrystals with no in situ formed Pb crystallites, a feature observed in previous TEM studies that has been attributed to radiation damage. Cryo-electron microscopy further delays observable effects of radiation damage. Powder electron diffraction with a hybrid pixel direct electron detector confirms the domination of orthorhombic crystals. These results emphasize the importance of optimizing TEM grid preparation and of exploiting data collection strategies that impart minimum electron dose for revealing the true structure of radiation-sensitive nanocrystals.

7.
Nanoscale Adv ; 3(9): 2567-2576, 2021 May 04.
Article in English | MEDLINE | ID: mdl-36134147

ABSTRACT

We recently presented the elaboration and functional properties of a new generation of hybrid membranes for PEMFC applications showing promising performances and durability. The strategy was to form, inside a commercial sPEEK membrane, via in situ sol-gel (SG) synthesis, a reactive SG phase able to reduce oxidative species generated during FC operation. In order to understand structure-properties interplay, we use a combination of direct space (AFM/3D FIB-SEM) and reciprocal space (SANS/WAXS) techniques to cover dimensional scales ranging from a hundred to few nanometers. AFM modulus images showed the SG phase distributed into spherical domains whose size increases with the SG uptake (ca. 100-200 nm range). Using contrast variation SANS, we observed that the sPEEK nanostructure is mostly unaffected by the insertion of the SG phase which presents a fractal-like multiscale structure. Additionally, the size of both the particles (aggregates/primary) is much too large to be sequestered in the ionic pathways of sPEEK. These findings indicate that the SG-NPs mainly grow within the amorphous interbundle domains. Noticeable rightward shift and widening of the ionomer peak are observed with the SG content, suggesting ion channel compression and greater heterogeneity of the ionic domain size. The SG phase develops in the interbundle regions with a limited impact on the water uptake but leading to a discontinuity of ionic conductivity. This Fourier and real spaces study clarifies the structure of the hybrid membranes and brings into the question the ideal distribution/localization of the SG phase to optimize the membrane's stabilization.

8.
Small ; 17(5): e2005671, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33369877

ABSTRACT

Tin oxide (SnO2 ) is an emerging electron transport layer (ETL) material in halide perovskite solar cells (PSCs). Among current limitations, open-circuit voltage (VOC ) loss is one of the major factors to be addressed for further improvement. Here a bilayer ETL consisting of two SnO2 nanoparticle layers doped with different amounts of ammonium chloride is proposed. As demonstrated by photoelectron spectroscopy and photophysical studies, the main effect of the novel ETL is to modify the energy level alignment at the SnO2 /perovskite interface, which leads to decreased carrier recombination, enhanced electron transfer, and reduced voltage loss. Moreover, X-ray diffraction reveals reduced strain in perovskite layers grown on bilayer ETLs with respect to single-layer ETLs, further contributing to a decrease of carrier recombination processes. Finally, the bilayer approach enables the more reproducible preparation of smooth and pinhole-free ETLs as compared to single-step deposition ETLs. PSCs with the doped bilayer SnO2 ETL demonstrate strongly increased VOC values of up to 1.21 V with a power conversion efficiency of 21.75% while showing negligible hysteresis and enhanced stability. Moreover, the SnO2 bilayer can be processed at low temperature (70 °C), and has therefore a high potential for use in tandem devices or flexible PSCs.

9.
Materials (Basel) ; 13(23)2020 Nov 30.
Article in English | MEDLINE | ID: mdl-33266319

ABSTRACT

This paper reports on hybrid, bioactive ceramic Ca-P-based coating formation on a Ti-6Al-7Nb alloy substrate to enhance the osseointegration process. The Ti alloy was anodized in a Ca3(PO4)2 suspension and then the additional layer was formed by the sol-gel technique to obtain a mixture of the calcium phosphate compounds. The oxide layer was porous and additional ceramic particles were formed after sol-gel treatment (scanning electron microscopy analysis coupled with energy-dispersive x-ray spectroscopy). The ceramic particles were formed on some parts of the oxide layer and did not completely fill the pores. The layer thickness of the anodized Ti alloy was comprised between 3.01 and 5.03 µm and increased to 7.52-12.30 µm after the formation of an additional layer. Post-treatment of the anodized Ti alloys caused a decrease in surface roughness, and the layer became strongly hydrophilic. Crystalline phase analysis (X-ray diffraction, XRD) showed that the hybrid layer was composed of TiO2 (anatase), Ca3(PO4)2, Ca10(PO4)6(OH)2 and a partially amorphous phase; thus, the layer was also analyzed by Raman spectroscopy. The hybrid layer showed worse adhesion to the substrate than the anodized layer only; however, the coating was not brittle, and the first delamination of the layer was determined at 1.84 ± 0.11 N during scratch-test measurement. The hybrid coating was favorable for collagen type I and lactoferrin adsorption, strongly influencing the proliferation of osteoblast-like MG-63 cells. The coatings were cytocompatible and may find applications in formation of the functional layers on long-term implants' surface after.

10.
Small ; 16(11): e1906812, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32091177

ABSTRACT

Failure mechanisms associated with silicon-based anodes are limiting the implementation of high-capacity lithium-ion batteries. Understanding the aging mechanism that deteriorates the anode performance and introducing novel-architectured composites offer new possibilities for improving the functionality of the electrodes. Here, the characterization of nano-architectured composite anode composed of active amorphous silicon domains (a-Si, 20 nm) and crystalline iron disilicide (c-FeSi2 , 5-15 nm) alloyed particles dispersed in a graphite matrix is reported. This unique hierarchical architecture yields long-term mechanical, structural, and cycling stability. Using advanced electron microscopy techniques, the nanoscale morphology and chemical evolution of the active particles upon lithiation/delithiation are investigated. Due to the volumetric variations of Si during lithiation/delithiation, the morphology of the a-Si/c-FeSi2 alloy evolves from a core-shell to a tree-branch type structure, wherein the continuous network of the active a-Si remains intact yielding capacity retention of 70% after 700 cycles. The root cause of electrode polarization, initial capacity fading, and electrode swelling is discussed and has profound implications for the development of stable lithium-ion batteries.

11.
Commun Chem ; 3(1): 141, 2020 Oct 16.
Article in English | MEDLINE | ID: mdl-36703381

ABSTRACT

Advanced anode material designs utilizing dual phase alloy systems like Si/FeSi2 nano-composites show great potential to decrease the capacity degrading and improve the cycling capability for Lithium (Li)-ion batteries. Here, we present a multi-scale characterization approach to understand the (de-)lithiation and irreversible volumetric changes of the amorphous silicon (a-Si)/crystalline iron-silicide (c-FeSi2) nanoscale phase and its evolution due to cycling, as well as their impact on the proximate pore network. Scattering and 2D/3D imaging techniques are applied to probe the anode structural ageing from nm to µm length scales, after up to 300 charge-discharge cycles, and combined with modeling using the collected image data as an input. We obtain a quantified insight into the inhomogeneous lithiation of the active material induced by the morphology changes due to cycling. The electrochemical performance of Li-ion batteries does not only depend on the active material used, but also on the architecture of its proximity.

12.
J Chem Phys ; 151(23): 231101, 2019 Dec 21.
Article in English | MEDLINE | ID: mdl-31864265

ABSTRACT

Eu2+ is used to replace toxic Pb2+ in metal halide perovskite nanocrystals (NCs). The synthesis implies injection of cesium oleate into a solution of europium (ii) bromide at an experimentally determined optimum temperature of 130 °C and a reaction time of 60 s. Structural analysis indicates the formation of spherical CsEuBr3 nanoparticles with a mean size of 43 ± 7 nm. Using EuI2 instead of EuBr2 leads to the formation of 18-nm CsI nanoparticles, while EuCl2 does not show any reaction with cesium oleate forming 80-nm EuCl2 nanoparticles. The obtained CsEuBr3 NCs exhibit bright blue emission at 413 nm (FWHM 30 nm) with a room temperature photoluminescence quantum yield of 39%. The emission originates from the Laporte-allowed 4f7-4f65d1 transition of Eu2+ and shows a PL decay time of 263 ns. The long-term stability of the optical properties is observed, making inorganic lead-free CsEuBr3 NCs promising deep blue emitters for optoelectronics.

13.
ACS Nano ; 13(10): 11538-11551, 2019 Oct 22.
Article in English | MEDLINE | ID: mdl-31560519

ABSTRACT

The (de)lithiation process and resulting atomic and nanoscale morphological changes of an a-Si/c-FeSi2/graphite composite negative electrode are investigated within a Li-ion full cell at several current rates (C-rates) and after prolonged cycling by simultaneous operando synchrotron wide-angle and small-angle X-ray scattering (WAXS and SAXS). WAXS allows the probing of the local crystalline structure. In particular, the observation of the graphite (de)lithiation process, revealed by the LixC6 Bragg reflections, enables access to the respective capacities of both graphite and active silicon. Simultaneously and independently, information on the silicon state of (de)lithiation and nanoscale morphology (1 to 60 nm) is obtained through SAXS. During lithiation, the SAXS intensity in the region corresponding to characteristic distances within the a-Si/c-FeSi2 domains increases. The combination of the SAXS/WAXS measurements over the course of several charge/discharge cycles, in pristine and aged electrodes, provides a complete picture of the C-rate-dependent sequential (de)lithiation mechanism of the a-Si/c-FeSi2/graphite anode. Our results indicate that, within the composite electrode, the active silicon volume does not increase linearly with lithium insertion and point toward the important role of the electrode morphology to accommodate the nanoscale silicon expansion, an effect that remains beneficial after cell aging and most probably explains the excellent performance of the composite material.

14.
Chem Commun (Camb) ; 55(11): 1663-1666, 2019 Jan 31.
Article in English | MEDLINE | ID: mdl-30657488

ABSTRACT

With the goal to tune the emission properties of colloidal InP quantum dots, the incorporation of Ga was explored. Unexpectedly, depending on the nature of the gallium precursor, the photoluminescence shifted either to the red (gallium oleate) or to the blue (gallium acetylacetonate). In the first case, larger-sized InP/GaP core/shell nanocrystals were formed, while in the second case the formation of an InGaP alloy structure enabled the blue range of emission (475 nm) to be accessed.

15.
J Phys Chem Lett ; 9(14): 3969-3977, 2018 Jul 19.
Article in English | MEDLINE | ID: mdl-29961330

ABSTRACT

The motion of CH3NH3+ cations in the low-temperature phase of the promising photovoltaic material methylammonium lead triiodide (CH3NH3PbI3) is investigated experimentally as well as theoretically, with a particular focus on the activation energy. Inelastic and quasi-elastic neutron scattering measurements reveal an activation energy of ∼48 meV. Through a combination of experiments and first-principles calculations, we attribute this activation energy to the relative rotation of CH3 against an NH3 group that stays bound to the inorganic cage. The inclusion of nuclear quantum effects through path integral molecular dynamics gives an activation energy of ∼42 meV, in good agreement with the neutron scattering experiments. For deuterated samples (CD3NH3PbI3), both theory and experiment observe a higher activation energy for the rotation of CD3 against NH3, which results from the smaller nuclear quantum effects in CD3. The rotation of the NH3 group, which is bound to the inorganic cage via strong hydrogen bonding, is unlikely to occur at low temperatures due to its high energy barrier of ∼120 meV.

16.
J Am Chem Soc ; 139(44): 15748-15759, 2017 11 08.
Article in English | MEDLINE | ID: mdl-28994294

ABSTRACT

Ternary metal chalcogenide nanocrystals (NCs) offer exciting opportunities as novel materials to be explored on the nanoscale showing optoelectronic properties tunable with size and composition. CuInS2 (CIS) NCs are the most widely studied representatives of this family as they can be easily prepared with good size control and in high yield by reacting the metal precursors (copper iodide and indium acetate) in dodecanethiol (DDT). Despite the widespread use of this synthesis method, both the reaction mechanism and the surface state of the obtained NCs remain elusive. Here, we perform in situ X-ray diffraction using synchrotron radiation to monitor the pre- and postnucleation stages of the formation of CIS NCs. SAXS measurements show that the reaction intermediate formed at 100 °C presents a periodic lamellar structure with a characteristic spacing of 34.9 Å. WAXS measurements performed after nucleation of the CIS NCs at 230 °C demonstrate that their growth kinetics depend on the degree of precursor conversion achieved in the initial stage at 100 °C. NC formation requires the cleavage of S-C bonds. We reveal by means of combined 1D and 2D proton and carbon NMR analyses that the generated dodecyl radicals lead to the formation of a new thioether species R-S-R. The latter is part of a ligand double layer, which consists of dynamically bound dodecanethiolate ligands as well as of head-to-tail bound R-S-R molecules. This ligand double layer and a high ligand density (3.6 DDT molecules per nm2) are at the origin of the apparent difficulty to functionalize the surface of CIS NCs obtained with the DDT method.

17.
Environ Sci Technol ; 50(1): 359-67, 2016 Jan 05.
Article in English | MEDLINE | ID: mdl-26606242

ABSTRACT

Microalgae are good candidates for toxic metal remediation biotechnologies. This study explores the cellular processes implemented by the green microalga Coccomyxa actinabiotis to take up and cope with silver over the concentration range of 10(-7) to 10(-2) M Ag(+). Understanding these processes enables us to assess the potential of this microalga for applications for bioremediation. Silver in situ speciation and localization were investigated using X-ray absorption spectroscopy, X-ray diffraction, and transmission electron microscopy. Silver toxicity was evaluated by monitoring microalgal growth and photochemical parameters. Different accumulation mechanisms were brought out depending on silver concentration. At low micromolar concentration, microalgae fixed all silver initially present in solution, trapping it inside the cells into the cytosol, mainly as unreduced Ag(I) bound with molecules containing sulfur. Silver was efficiently detoxified. When concentration increased, silver spread throughout the cell and particularly entered the chloroplast, where it damaged the photosystem. Most silver was reduced to Ag(0) and aggregated to form crystalline silver nanoparticles of face-centered cubic structure with a mean size of 10 nm. An additional minor interaction of silver with molecules containing sulfur indicated the concomitant existence of the mechanism observed at low concentration or nanoparticle capping. Nanoparticles were observed in chloroplasts, in mitochondria, on the plasma membrane, on cytosolic membrane structures, and in vacuoles. Above 10(-4) M Ag(+), damages were irreversible, and photosynthesis and growth were definitely inhibited. However, high silver amounts remained confined inside microalgae, showing their potential for the bioremediation of contaminated water.


Subject(s)
Chlorophyta , Metal Nanoparticles , Microalgae , Silver , Biodegradation, Environmental , Chlorophyta/chemistry , Chlorophyta/metabolism , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Microalgae/chemistry , Microalgae/metabolism , Microscopy, Electron, Transmission , Silver/chemistry , Silver/metabolism , Silver/toxicity , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity , X-Ray Absorption Spectroscopy , X-Ray Diffraction
18.
Chemphyschem ; 17(5): 654-9, 2016 Mar 03.
Article in English | MEDLINE | ID: mdl-26455437

ABSTRACT

tert-butylthiol (tBuSH) is used as the sulfur source, surface ligand and co-solvent in the synthesis of CuInS2 nanocrystals (NCs). The presented method gives direct access to short-ligand-capped NCs without post-synthetic ligand exchange. The obtained 5 nm CuInS2 NCs crystallize in the cubic sphalerite phase with space group F-43m and a lattice parameter a=5.65 Å. Their comparably large optical and electrochemical band gap of 2.6-2.7 eV is attributed to iodine incorporation into the crystal structure as reflected by the composition Cu1.04 In0.96 S1.84 I0.62 determined by EDX. Conductivity measurements on thin films of the tBuSH-capped NCs result in a value of 2.5(.) 10(-2)  S m(-1) , which represents an increase by a factor of 400 compared to established dodecanethiol-capped CuInS2 NCs.

19.
J Am Chem Soc ; 137(31): 9943-52, 2015 Aug 12.
Article in English | MEDLINE | ID: mdl-26200758

ABSTRACT

Tin sulfide nanoparticles have a great potential for use in a broad range of applications related to solar energy conversion (photovoltaics, photocatalysis), electrochemical energy storage, and thermoelectrics. The development of chemical synthesis methods allowing for the precise control of size, shape, composition, and crystalline phase is essential. We present a novel approach giving access to monodisperse square SnS nanoplatelets, whose dimensions can be adjusted in the range of 4-15 nm (thickness) and 15-100 nm (edge length). Their growth occurs via controlled assembly of initially formed polyhedral seed nanoparticles, which themselves originate from an intermediate tetrachlorotin-oleate complex. The SnS nanoplatelets crystallize in the α-SnS orthorhombic herzenbergite structure (space group Pnma) with no evidence of secondary phases. Electron tomography, high angle annular dark field scanning transmission electron microscopy and electron diffraction combined with image simulations evidence the presence of ordered Sn vacancy rich (100) planes within the SnS nanoplatelets, in accordance with their slightly S-rich composition observed. When using elemental sulfur instead of thioacetamide as the sulfur source, the same reaction yields small (2-3 nm) spherical SnS2 nanoparticles, which crystallize in the berndtite 4H crystallographic phase (space group P3m1). They exhibit quantum confinement (E(g) = 2.8 eV vs 2.2 eV in the bulk) and room temperature photoluminescence. By means of electrochemical measurements we determined their electron affinity EA = -4.8 eV, indicating the possibility to use them as a substitute for CdS (EA = -4.6 eV) in the buffer layer of thin film solar cells.

20.
Sci Rep ; 5: 7768, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25588811

ABSTRACT

Geminate recombination of bound polaron pairs at the donor/acceptor interface is one of the major loss mechanisms in organic bulk heterojunction solar cells. One way to overcome Coulomb attraction between opposite charge carriers and to achieve their full dissociation is the introduction of high dielectric permittivity materials such as nanoparticles of narrow band gap semiconductors. We selected CuInS2 nanocrystals of 7.4 nm size, which present intermediate energy levels with respect to poly(3-hexylthiophene) (P3HT) and Phenyl-C61-butyric acid methyl ester (PCBM). Efficient charge transfer from P3HT to nanocrystals takes place as evidenced by light-induced electron spin resonance. Charge transfer between nanocrystals and PCBM only occurs after replacing bulky dodecanethiol (DDT) surface ligands with shorter 1,2-ethylhexanethiol (EHT) ligands. Solar cells containing in the active layer a ternary blend of P3HT:PCBM:CuInS2-EHT nanocrystals in 1:1:0.5 mass ratio show strongly improved short circuit current density and a higher fill factor with respect to the P3HT:PCBM reference device. Complementary measurements of the absorption properties, external quantum efficiency and charge carrier mobility indicate that enhanced charge separation in the ternary blend is at the origin of the observed behavior. The same trend is observed for blends using the glassy polymer poly(triarylamine) (PTAA).

SELECTION OF CITATIONS
SEARCH DETAIL
...