Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 19(43): e2300972, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37376837

ABSTRACT

This work reveals the crucial role of zeolite acidity in the synthesis of zeolite-templated carbons (ZTCs). While textural and chemical properties appear to be independent from acidity at a given synthesis temperature, the spin concentration in hybrid materials appears to be strongly impacted by the zeolite acid site concentration. The electrical conductivity of the hybrids and resulting ZTCs are closely related to the spin concentration in the hybrid materials. The amount of zeolite acid sites hence fundamentally impacts the electrical conductivity of the samples that spans over a range of four magnitudes. Electrical conductivity reveals as key parameter to describe the quality of ZTCs.

2.
Toxics ; 11(3)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36976971

ABSTRACT

The removal of zinc ions from water was investigated using two types of ordered mesoporous silica (SBA-15 and SBA-16). Both materials were functionalized with APTES (3-aminopropyltriethoxy-silane) and EDTA (ethylenediaminetetraacetic acid) through post grafting methods. The modified adsorbents were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), X-ray diffraction (XRD), nitrogen (N2) adsorption-desorption analysis, Fourier transform infrared spectroscopy (FT-IR), and thermogravimetric analysis. The ordered structure of the adsorbents was conserved after modification. SBA-16 was found to be more efficient than SBA-15 owing to its structural characteristics. Different experimental conditions were examined (pH, contact time, and initial zinc concentration). The kinetic adsorption data followed the pseudo-second-order model indicating favorable adsorption conditions. The intra-particle diffusion model plot represented a two-stage adsorption process. The maximum adsorption capacities were calculated by the Langmuir model. The adsorbent can be regenerated and reused several times without a significant decline in adsorption efficiency.

4.
ChemSusChem ; 1(7): 586-613, 2008.
Article in English | MEDLINE | ID: mdl-18702160

ABSTRACT

Glycerol is the main co-product of the vegetable oils industry (especially biodiesel). With the rapid development of oleochemistry, the production of glycerol is rapidly increasing and chemists are trying to find new applications of glycerol to encourage a better industrial development of vegetable oils. In this Review, attention is focused on the selective use of glycerol as a safe organic building block for organic chemistry. An overview is given of the different heterogeneous catalytic routes developed by chemists for the successful and environmentally friendly use of glycerol in sustainable organic chemistry. In particular, the effects of different catalyst structural parameters are discussed to clearly highlight how catalysis can help organic chemists to overcome the drawbacks stemming from the use of glycerol as a safe organic building block. It is shown that heterogeneous catalysis offers efficient routes for bypassing the traditional use of highly toxic and expensive epichlorohydrin, 3-chloro-1,2-propanediol, or glycidol, which are usually used as a glyceryl donor in organic chemistry.


Subject(s)
Glycerol/chemistry , Carbon/chemistry , Catalysis , Cation Exchange Resins/chemistry , Esterification , Fatty Acids/chemistry , Oxides/chemistry , Substrate Specificity , Zeolites/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...