Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Med Sci Sports Exerc ; 56(6): 1094-1107, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38306312

ABSTRACT

PURPOSE: This study aimed to examine the recovery kinetics (i.e., time-dependent changes) of performance-related variables between two 120-min male football games performed 3 d apart with and without carbohydrate supplementation. METHODS: Twenty male players (20 ± 1 yr; body fat, 14.9% ± 5.1%; maximal oxygen consumption, 59.4 ± 3.7 mL·kg -1 ·min -1 ) participated in two 120-min football games (G1, G2) according to a randomized, two-trial, repeated-measures, crossover, double-blind design. Participants received carbohydrate/placebo supplements during recovery between games. Field activity was monitored during the games. Performance testing and blood sampling were performed before and at 90 and 120 min of each game. Muscle biopsies were collected at baseline and at 90 and 120 min of G1 and pre-G2. RESULTS: Compared with G1, G2 was associated with reduced total distance (10,870 vs 10,685 m during 90 min and 3327 vs 3089 m during extra 30 min; P = 0.007-0.038), average (6.7 vs 6.2 km/h during extra 30-min game-play; P = 0.007) and maximal speed (32.2 vs 30.2 km/h during 90 min and 29.0 vs 27.9 km/h during extra 30 min; P < 0.05), accelerations/decelerations ( P < 0.05), and mean heart rate ( P < 0.05). Repeated sprint ability ( P < 0.001), jumping ( P < 0.05), and strength ( P < 0.001) performance were compromised before and during G2. Muscle glycogen was not restored at G2 baseline ( P = 0.005). Extended game-play reduced lymphocyte, erythrocyte counts, hematocrit, hemoglobin, reduced glutathione ( P < 0.05) and increased delayed onset of muscle soreness, creatine kinase activity, blood glycerol, ammonia, and protein carbonyls ( P < 0.05) before and during G2. Pax7 + ( P = 0.004) and MyoD + cells ( P = 0.019) increased at baseline G2. Carbohydrate supplementation restored performance and glycogen, reduced glycerol and delayed onset of muscle soreness responses, and increased leukocyte counts and Pax7 + and MyoD + cells. CONCLUSIONS: Results suggest that extended football games induce a prolonged recovery of performance, which may be facilitated by carbohydrate supplementation during a congested game fixture.


Subject(s)
Athletic Performance , Cross-Over Studies , Dietary Carbohydrates , Muscle, Skeletal , Soccer , Humans , Male , Double-Blind Method , Young Adult , Soccer/physiology , Athletic Performance/physiology , Muscle, Skeletal/physiology , Dietary Carbohydrates/administration & dosage , Glycogen/metabolism , Oxygen Consumption , Dietary Supplements , Heart Rate
2.
Eur J Appl Physiol ; 124(3): 881-896, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37776346

ABSTRACT

PURPOSE: To determine the recovery kinetics of performance and exercise-induced muscle damage following different sprint-training protocols. METHODS: In a crossover design, ten male and female athletes (20.6 ± 2.4 years) performed 2 × (3 × 20 m: 2 min rest) and 1× (3 × 30 m: 3 min rest) of: (a) unresisted sprints (UST), (b) resisted sprints with 10% of body mass (BM) load (RST10), (c) resisted sprints with 20% BM load (RST20), against a control trial (no-training). RESULTS: Blood lactate (mmol/L) increased post-training versus pre-training in all sprint-training trials (6.7 ± 2.4 vs 1.2 ± 0.2, 5.6 ± 2.4 vs 1.3 ± 0.3, 7.3 ± 2.7 vs 1.2 ± 0.3, in UST, RST10, RST20, respectively), as did creatine kinase (U/L) 24 h, 48 h and 72 h post-training (UST: 251 ± 173, 238 ± 154, 209 ± 115 vs 155 ± 9, RST10: 252 ± 134, 240 ± 83, 218 ± 103 vs 164 ± 106; RST20: 237 ± 133, 323 ± 303, 262 ± 184 vs 179 ± 106, respectively). DOMS of knee-extensors (KE) and knee-flexors (KF) increased post-training up to 72 h in all sprint-training trials versus pre-training (ranging from 1.6 ± 1.3 to 3.8 ± 2.8 vs 1.0 ± 0, respectively). Eccentric torque (N m) of the KE of the non-dominant limb, decreased 24 h post-training versus pre-training in all sprint-training trials (UST: 249 ± 49 vs 266 ± 54; RST10: 229 ± 52 vs 273 ± 72; RST20: 253 ± 6 vs 262 ± 56), as did that of the KF of the dominant limb (UST: 135 ± 29 vs 144 ± 26; RST10: 130 ± 29 vs 140 ± 25; RST20: 139 ± 33 vs 142 ± 26). 10-m sprint-time (s) increased 48 h post-training versus pre-training (1.81 ± 0.15 vs 1.77 ± 0.11), and 30-m sprint-time increased 24 h, 48 h, 72 h post-training versus pre-training (4.35 ± 0.36, 4.40 ± 0.44, 4.33 ± 0.41 vs 4.21 ± 0.34, respectively), only in RST20. CONCLUSIONS: Unresisted and resisted sprint-training induces prolonged reduction of muscle strength (24 h), and sprinting performance (72 h), associated with prolonged increase of DOMS and CK (72 h).


Subject(s)
Athletic Performance , Resistance Training , Humans , Male , Female , Athletic Performance/physiology , Resistance Training/methods , Athletes , Physical Therapy Modalities , Knee
3.
J Sports Sci ; 41(13): 1326-1335, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37864292

ABSTRACT

The present study compared the effect of 75 vs 150 vs 300 intensity-matched eccentric contractions on muscle damage and performance recovery kinetics. Ten healthy males participated in a randomized, cross-over study consisted of 4 experimental trials (ECC75, ECC150, ECC300 and Control - no exercise) with a 4-week washout period in-between. Performance and muscle damage, inflammatory and oxidative stress markers were evaluated at baseline, post-exercise, 24, 48 and 192 hours following each exercise protocol. Concentric and eccentric peak torque decreased similarly in ECC150 and ECC300 during the first 48 h of recovery (p < 0.05) but remained unaffected in ECC75. Countermovement jump indices decreased post-exercise and at 24 h in ECC150 and ECC300, with ECC300 inducing a more pronounced reduction (p < 0.05). Creatine kinase increased until 48 h of recovery in all trials and remained elevated up to 192 h only in ECC300 (p < 0.05). Delayed onset of muscle soreness increased, and knee-joint range of motion decreased in a volume-dependent manner during the first 48 h (p < 0.05). Likewise, a volume-dependent decline of glutathione and a rise of protein carbonyls was observed during the first 48 h of recovery (p < 0.05). Collectively, our results indicate that muscle damage and performance recovery following eccentric exercise is volume dependent, at least in lower limbs.


Subject(s)
Exercise , Myalgia , Male , Humans , Cross-Over Studies , Exercise/physiology , Range of Motion, Articular , Knee Joint
4.
Sports (Basel) ; 11(8)2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37624137

ABSTRACT

This study investigated the cardiac functional and the morphological adaptations because of two endurance training protocols. Untrained children (N = 30, age: 12-14 years) were divided into three groups (N = 10/group). The first group did not perform any session (CONTROL), the second performed ventilatory threshold endurance training (VTT) for 12 weeks (2 sessions/week) at an intensity corresponding to the ventilatory threshold (VT) and the third (IT) performed two sessions per week at 120% of maximal oxygen uptake (VO2max). Two other sessions (30 min running at 55-65% of VO2max) per week were performed in VVT and IT. Echocardiograms (Left Ventricular end Diastolic Diameter, LVEDd; Left Ventricular end Diastolic Volume, LVEDV; Stroke Volume, SV; Ejection Fraction, EF; Posterior Wall Thickness of the Left Ventricle, PWTLV) and cardiopulmonary ergospirometry (VO2max, VT, velocity at VO2max (vVO2max), time in vVO2max until exhaustion (Tlim) was conducted before and after protocols. Significant increases were observed in both training groups in LVEDd (VTT = 5%; IT = 3.64%), in LVEDV (VTT = 23.7%; ITT = 13.6%), in SV (VTT = 25%; IT = 16.9%) but not in PWTLV and EF, after protocols. No differences were noted in the CONTROL group. VO2max and VT increased significantly in both training groups by approximately 9% after training. Our results indicate that intensity endurance training does not induce meaningful functional and morphological perturbations in the hearts of children.

5.
Eur J Nutr ; 62(4): 1767-1782, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36828945

ABSTRACT

PURPOSE: To investigate the association between redox status in erythrocytes and skeletal muscle with dietary nutrient intake and markers of physical fitness and habitual physical activity (PA). METHODS: Forty-five young physically active men were assessed for body composition, dietary nutrient intake, muscle strength, cardiorespiratory capacity and habitual PA. Blood and muscle samples were collected to estimate selected redox biomarkers. Partial correlation analysis was used to evaluate the independent relationship of each factor with redox biomarkers. RESULTS: Dietary cysteine intake was positively correlated (p < 0.001) with both erythrocyte (r = 0.697) and muscle GSH (0.654, p < 0.001), erythrocyte reduced/oxidized glutathione ratio (GSH/GSSG) (r = 0.530, p = 0.001) and glutathione reductase (GR) activity (r = 0.352, p = 0.030) and inversely correlated with erythrocyte protein carbonyls (PC) levels (r = - 0.325; p = 0.046). Knee extensors eccentric peak torque was positively correlated with GR activity (r = 0.355; p = 0.031) while, one-repetition maximum in back squat exercise was positively correlated with erythrocyte GSH/GSSG ratio (r = 0.401; p = 0.014) and inversely correlated with erythrocyte GSSG and PC (r = - 0.441, p = 0.006; r = - 0.413, p = 0.011 respectively). Glutathione peroxidase (GPx) activity was positively correlated with step count (r = 0.520; p < 0.001), light (r = 0.406; p = 0.008), moderate (r = 0.417; p = 0.006), moderate-to-vigorous (r = 0.475; p = 0.001), vigorous (r = 0.352; p = 0.022) and very vigorous (r = 0.326; p = 0.035) PA. Muscle GSSG inversely correlated with light PA (r = - 0.353; p = 0.022). CONCLUSION: These results indicate that dietary cysteine intake may be a critical element for the regulation of glutathione metabolism and redox status in two different tissues pinpointing the independent significance of cysteine for optimal redox regulation. Musculoskeletal fitness and PA levels may be predictors of skeletal muscle, but not erythrocyte, antioxidant capacity. TRIAL REGISTRATION: Registry: ClinicalTrials.gov, identifier: NCT03711838, date of registration: October 19, 2018.


Subject(s)
Cysteine , Glutathione , Male , Humans , Glutathione Disulfide/metabolism , Glutathione/metabolism , Oxidation-Reduction , Antioxidants/metabolism , Muscle, Skeletal/metabolism , Eating , Physical Fitness , Biomarkers/metabolism , Oxidative Stress
6.
Eur J Sport Sci ; 23(3): 432-443, 2023 Mar.
Article in English | MEDLINE | ID: mdl-34974824

ABSTRACT

This study examined the dose-response effects of a 1-year hybrid-type, multicomponent interval training programme (DoIT) on various musculoskeletal fitness parameters in inactive overweight and obese adults in a gym setting. Ninety-seven middle-aged (44.8 ± 5.2 years) individuals with overweight/obesity (31.2 ± 5.7 kg/m2) (66% female) were randomly assigned to the following groups: (i) no-intervention control (CON, n = 29), (ii) DoIT performed once weekly (DoIT-1, n = 24), (iii) DoIT performed twice weekly (DoIT-2, n = 23) and (iv) DoIT performed thrice weekly (DoIT-3, n = 21). DoIT was a time-efficient, intermittent-based, multicomponent exercise protocol using progressive loaded fundamental movement patterns with prescribed work-to-rest intervals (1:3-2:1) in a circuit format (2-3 rounds). Muscular strength, muscular endurance, flexibility, passive range of motion (PRoM), static balance and functional movement screen (FMS®) were assessed at baseline, 6 and 12 months following intervention. At post-training, all exercise groups exhibited superior changes than CON in (i) muscular strength (+13%-38%, p < 0.001); (ii) muscular endurance (+42%-159%, p < 0.001); (iii) flexibility (+12%-42%, p < 0.001); (iv) PRoM (+6%-50%, p = 0.001-0.026); (v) static balance (+61%-163%, p < 0.001); and (vi) FMS (+18%-39%, p < 0.001). Although a single exercise session/week improved musculoskeletal fitness, changes demonstrated a step-wise improvement with two and three sessions/week suggesting a dose-dependent response. The response rate to training was 100% for all exercise groups. These findings suggest that a multicomponent exercise approach incorporating bodyweight drills and resistance-based alternative modes performed under real-world conditions may improve several musculoskeletal fitness indicators in a dose-dependent manner in inactive, middle-aged adults with overweight/obesity.Trial registration: ClinicalTrials.gov identifier: NCT03759951.


Subject(s)
Obesity , Overweight , Middle Aged , Adult , Female , Humans , Male , Overweight/therapy , Obesity/therapy , Body Weight , Exercise , Movement
7.
Med Sci Sports Exerc ; 55(1): 80-92, 2023 01 01.
Article in English | MEDLINE | ID: mdl-35977104

ABSTRACT

PURPOSE: This study evaluated how extended match time (90 + 30 min) affected physiological responses and fatigue in male soccer players. METHODS: Twenty competitive players (mean ± SD: age, 20 ± 1 yr; maximal oxygen uptake, 59 ± 4 mL·min -1 ·kg -1 ) completed an experimental match with their activity pattern and heart rate assessed throughout the game, whereas countermovement jump performance and repeated sprint ability were tested and quadriceps muscle biopsies and venous blood samples were taken at baseline and after 90 and 120 min of match play. RESULTS: Less high-intensity running (12%) was performed in extra time in association with fewer intense accelerations and decelerations per minute compared with normal time. Peak sprint speed was 11% lower in extra time compared with normal time, and fatigue also manifested in impaired postmatch repeated sprint ability and countermovement jump performance (all P < 0.05). Muscle glycogen declined from 373 ± 59 mmol·kg -1 dry weight (dw) at baseline to 266 ± 64 mmol·kg -1 dw after 90 min, with a further decline to 186 ± 56 mmol·kg -1 dw after extra time ( P < 0.05) and with single-fiber analyses revealing depleted or very low glycogen levels in ~75% of both slow and fast twitch fibers. Blood glucose did not change during the first 90-min but declined ( P < 0.05) to 81 ± 8 mg·dL -1 after extra time. Plasma glycerol and ammonia peaked at 236 ± 33 mg·dL -1 and 75 ± 21 µmol·L -1 after the extra period. CONCLUSIONS: These findings demonstrate exacerbated fatigue after extra time compared with normal time, which seems to be associated with muscle glycogen depletion, reductions in blood glucose levels, and hyperammonemia. Together, this points to metabolic disturbances being a major part of the integrated and multifaceted fatigue response during extended soccer match play.


Subject(s)
Athletic Performance , Running , Soccer , Humans , Male , Young Adult , Adult , Soccer/physiology , Athletic Performance/physiology , Blood Glucose , Running/physiology , Glycogen , Muscle Fatigue
8.
Diseases ; 10(4)2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36547206

ABSTRACT

This study investigated whether Greek Orthodox Christian fasting during Holy Week can change body composition and cardiometabolic parameters in overweight individuals, and whether these changes are maintained one week after fasting cessation (FC). Body composition and physiological and biochemical parameters were measured before, immediately after (n = 23) and one week after FC (subgroup of n = 10). Fasting resulted in decreased body weight, waist circumference, waist-to-hip ratio, body mass index and total body fat, as well as blood glucose, total cholesterol and low-density lipoprotein cholesterol levels. Nutrition analysis showed a decreased protein and saturated fat intake during fasting. FC (n = 10) resulted in a decreased carbohydrate intake and increased protein and cholesterol intake compared to fasting. Fasting resulted in decreased blood glucose, total cholesterol and LDL cholesterol levels but returned to pre-fasting levels after FC. Greek Orthodox Christian fasting during Holy Week is beneficial for body composition and some aspects of cardiometabolic health. However, these favourable changes are not maintained one week following fasting.

9.
Circ Cardiovasc Qual Outcomes ; 15(6): e008243, 2022 06.
Article in English | MEDLINE | ID: mdl-35477256

ABSTRACT

BACKGROUND: Although regular exercise is recommended for preventing and treating overweight/obesity, the most effective exercise type for improving cardiometabolic health in individuals with overweight/obesity remains largely undecided. This network meta-analysis aimed to evaluate and rank the comparative efficacy of 5 exercise modalities on cardiometabolic health measures in individuals with overweight/obesity. METHODS: A database search was conducted in MEDLINE, Embase, Scopus, and Web of Science from inception up to September 2020. The review focused on randomized controlled trials involving exercise interventions consisting of continuous endurance training, interval training, resistance training, combined aerobic and resistance training (combined training), and hybrid-type training. Exercise interventions aimed to improve somatometric variables, body composition, lipid metabolism, glucose control, blood pressure, cardiorespiratory fitness, and muscular strength. The Cochrane risk of bias tool was used to evaluate eligible studies. A random-effects network meta-analysis was performed within a frequentist framework. The intervention ranking was carried out using a Bayesian model where mean and SD were equal to the respective frequentist estimates. RESULTS: A total of 4331 participants (59% female; mean age: 38.7±12.3 years) from 81 studies were included. Combined training was the most effective modality and hybrid-type training the second most effective in improving cardiometabolic health-related outcomes in these populations suggesting a higher efficacy for multicomponent exercise interventions compared to single-component modalities, that is, continuous endurance training, interval training, and resistance training. A subgroup analysis revealed that the effects from different exercise types were mediated by gender. CONCLUSIONS: These findings corroborate the latest guidelines on exercise for individuals with overweight/obesity highlighting the importance of a multicomponent exercise approach to improve cardiometabolic health. Physicians and healthcare professionals should consider prescribing multicomponent exercise interventions to adults with overweight/obesity to maximize clinical outcomes. REGISTRATION: URL: https://www.crd.york.ac.uk/PROSPERO/; Unique identifier: CRD42020202647.


Subject(s)
Cardiovascular Diseases , Overweight , Adult , Bayes Theorem , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/prevention & control , Exercise , Female , Humans , Male , Middle Aged , Network Meta-Analysis , Obesity/diagnosis , Obesity/therapy , Overweight/diagnosis , Overweight/therapy , Randomized Controlled Trials as Topic
10.
Scand J Med Sci Sports ; 32 Suppl 1: 39-53, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34427373

ABSTRACT

We combined game activity analyses with skeletal muscle phenotypes and comprehensive physiological testing to elucidate factors of importance for physical performance in elite women's football. GPS-data from an experimental game, sprint and endurance testing, and muscle tissue analysis of metabolic enzyme activity, protein expression and fiber type composition were completed for international top-level women players (n = 20; age; 23 ± 4 yrs, height; 166 ± 10 cm, weight; 60 ± 8 kg; VO2max ; 51 ± 6 ml/min/kg). Muscle monocarboxylate transporter 4 (MCT4) protein expression explained 46% of the variance in total game distance, while the ability to maintain high-intensity running (HIR) during the final 15 min of the game correlated to myosin heavy chain 1 (MHCI) and Na+ -K+ ATPase ß1, FXYD1 (phospholemman) and superoxide dismutase 2 (SOD2) protein expression (range: r = 0.51-0.71; all p < 0.05). Total HIR distance correlated with (MHCIIa) protein expression (r = 0.51; p < 0.05), while muscle Na+ /H+ exchanger 1 (NHE1) protein explained 36% of the variance in game sprint distance (p < 0.05). Total game accelerations (actions >4 m/s2 ) correlated with platelet endothelial cell adhesion molecule (PECAM-1) protein expression (r = 0.51; p < 0.05), while concentric knee flexor strength explained 42-62% of the variance in intense decelerations (>4 m/s2 ). In conclusion, for elite women players' game endurance performance and resistance to end-game fatigue were affected by monocarboxylate transporter expression and myosin heavy chain profile. HIR was also correlated to ion transporter expression and muscle antioxidative capacity. Finally, the importance of functional strength and measures of muscle vascularization in relation to total game decelerations and accelerations, respectively, illustrates the complex physiological demands in elite women's football.


Subject(s)
Athletic Performance , Soccer , Female , Humans , Athletic Performance/physiology , Muscle, Skeletal/physiology , Myosin Heavy Chains/metabolism , Phenotype
11.
Scand J Med Sci Sports ; 32 Suppl 1: 27-38, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34171140

ABSTRACT

The present study examined skeletal muscle metabolism and changes in repeated sprint performance during match play for n = 20 competitive elite women outfield players. We obtained musculus vastus lateralis biopsies and blood samples before, after, and following intense periods in each half of a friendly match, along with 5 × 30-meter sprint tests and movement pattern analyses (10-Hz S5 Global Positioning System [GPS]). Muscle glycogen decreased by 39% and 42% after an intense period of the second half and after the match, respectively, compared to baseline (p < 0.05). Post-match, 80% type I fibers and 69% type II fibers were almost empty or completely empty of glycogen. Muscle lactate was higher (p < 0.05) after the intense period of the first half and post-match compared to baseline (14.3 ± 4.6 (±SEM) and 12.9 ± 5.7 vs. 6.4 ± 3.7 mmol/kg d.w.). Muscle phosphocreatine was reduced (p < 0.05) by 16% and 12%, respectively, after an intense period in the first and second half compared to baseline. Blood lactate and glucose increased during the match and peaked at 8.4 ± 2.0 and 7.9 ± 1.2 mmol/L, respectively. Mean 5 × 30 m sprint time declined by 3.2 ± 1.7 and 7.0 ± 2.1% after the first and second half, respectively, and 4.7 ± 1.6% (p < 0.05) after an intense period in the first half compared to baseline. In conclusion, match play in elite female football players resulted in marked glycogen depletion in both fiber types, which may explain fatigue at the end of a match. Repeated sprint ability was impaired after intense periods in the first half and after both halves, which may be associated with the observed muscle metabolite perturbations.


Subject(s)
Athletic Performance , Soccer , Female , Humans , Athletic Performance/physiology , Glycogen/metabolism , Lactic Acid , Muscle, Skeletal/metabolism , Soccer/physiology
12.
Oxid Med Cell Longev ; 2021: 8376915, 2021.
Article in English | MEDLINE | ID: mdl-34917235

ABSTRACT

Aging is associated with the development of chronic low-grade systemic inflammation (LGSI) characterized by increased circulating levels of proinflammatory cytokines and acute phase proteins such as C-reactive protein (CRP). Collective evidence suggests that elevated levels of inflammatory mediators such as CRP, interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α) are correlated with deteriorated skeletal muscle mass and function, though the molecular footprint of this observation in the aged human skeletal muscle remains obscure. Based on animal models showing impaired protein synthesis and enhanced degradation in response to LGSI, we compared here the response of proteolysis- and protein synthesis-related signaling proteins as well as the satellite cell and amino acid transporter protein content between healthy older adults with increased versus physiological blood hs-CRP levels in the fasted (basal) state and after an anabolic stimulus comprised of acute resistance exercise (RE) and protein feeding. Our main findings indicate that older adults with increased hs-CRP levels demonstrate (i) increased proteasome activity, accompanied by increased protein carbonylation and IKKα/ß phosphorylation; (ii) reduced Pax7+ satellite cells; (iii) increased insulin resistance, at the basal state; and (iv) impaired S6 ribosomal protein phosphorylation accompanied by hyperinsulinemia following an acute RE bout combined with protein ingestion. Collectively, these data provide support to the concept that age-related chronic LGSI may upregulate proteasome activity via induction of the NF-κB signaling and protein oxidation and impair the insulin-dependent anabolic potential of human skeletal muscle.


Subject(s)
Exercise , Hyperinsulinism/pathology , Inflammation Mediators/metabolism , Inflammation/physiopathology , Insulin Resistance , Muscle, Skeletal/pathology , Proteolysis , Aged , Healthy Volunteers , Humans , Hyperinsulinism/metabolism , Male , Muscle, Skeletal/metabolism , Phosphorylation , Ribosomal Protein S6 Kinases/metabolism
13.
Antioxidants (Basel) ; 10(10)2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34679738

ABSTRACT

This randomized controlled trial investigated the effects of a 5-month high-intensity hybrid-type neuromuscular training program with nontraditional implements on cardiometabolic health, redox status, and cardiovascular disease (CVD) risk in inactive overweight and obese women. Forty-nine inactive female participants with overweight and obesity (age: 36.4 ± 4.4 years; BMI: 29.1 ± 2.9 kg/m2) were randomly assigned to either a control (C, n = 21) or a training group (TR, n = 28). TR followed a 20-week supervised, progressive, time-efficient (3 days/week; 6-15 min net exercise time) program implementing loaded fundamental movement patterns with prescribed work-to-rest time intervals (20-40 s, 1:2, 1:1, 2:1) in a circuit fashion (2-3 rounds). Cardiometabolic risk factors were measured at baseline and post-training as secondary outcomes of a larger randomized controlled trial. At post-intervention, TR demonstrated favorable changes in resting heart rate (-7%, p = 0.043), high-density lipoprotein (+18.1%, p = 0.029), atherogenic index (-17%, p = 0.045), mean arterial pressure (-4.5%, p = 0.03), waist circumference (-6.2%, p = 0.005), waist-to-hip ratio (-4.6%; p = 0.015), metabolic syndrome severity score (-222%, p = 0.024), full 30-year CVD risk (-15.8%, p = 0.002) and hard 30-year CVD risk (-17.6%, p = 0.01), vascular age (-7.8%, p = 0.002), protein carbonyls (-45.7%, p = 0.001), catalase activity (+15.2%, p = 0.023), and total antioxidant capacity (+11.4%, p = 0.002) relative to C. Additionally, TR induced beneficial changes in fasting glucose (-3.4%, p = 0.002), homeostatic model assessment for insulin resistance (-15.7%, p < 0.001), diastolic blood pressure (-5.6%, p < 0.001), reduced glutathione (+39.8%, p < 0.001), 10-year CVD risk (-17.4%, p = 0.011), and total bilirubin (-21.7%, p < 0.001) compared to baseline. These results suggest that hybrid-type neuromuscular training may improve aspects of cardiometabolic health and antioxidant status in inactive overweight and obese women providing a time-efficient (~100 min/week) exercise approach in a real-world gym setting.

14.
Int J Mol Sci ; 22(7)2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33808079

ABSTRACT

Spirulina plantensis is a popular supplement which has been shown to have antioxidant and performance enhancing properties. The purpose of this study was to evaluate the effects of spirulina supplementation on (a) redox status (b) muscle performance and (c) muscle damage following an eccentric bout of exercise that would induce muscle damage. Twenty-four healthy, recreationally trained males participated in the study and were randomly separated into two groups: a spirulina supplementation (6 g per day) and a placebo group. Both groups performed an eccentric bout of exercise consisting of 5 sets and 15 maximum reps per set. Blood was collected at 24, 48, 72 and 96 h after the bout and total antioxidant capacity (TAC) and protein carbonyls (PC) were assessed in plasma. Delayed onset muscle soreness (DOMS) was also assessed at the same aforementioned time points. Eccentric peak torque (EPT) was evaluated immediately after exercise, as well as at 24, 48, 72 and 96 h post exercise. Redox status indices (TAC and PC) did not change significantly at any time point post exercise. DOMS increased significantly 24 h post exercise and remained elevated until 72 h and 96 h post exercise for the placebo and spirulina group, respectively. EPT decreased significantly and immediately post exercise and remained significantly lower compared to baseline until 72 h post exercise. No significant differences between groups were found for DOMS and EPT. These results indicate that spirulina supplementation following a muscle damaging protocol does not confer beneficial effects on redox status, muscle performance or damage.


Subject(s)
Dietary Supplements , Exercise/physiology , Muscle, Skeletal/physiology , Myalgia/diet therapy , Spirulina , Adult , Humans , Male , Muscle, Skeletal/drug effects , Oxidation-Reduction , Young Adult
15.
J Int Soc Sports Nutr ; 18(1): 23, 2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33726784

ABSTRACT

BACKGROUND: Soccer-specific speed-endurance training induces short-term neuromuscular fatigue and performance deterioration over a 72-h recovery period, associated with elevated markers of exercise-induced muscle damage. We compared the effects of whey vs. soy protein supplementation on field activity, performance, muscle damage and redox responses following speed-endurance training in soccer players. METHODS: Ten well-trained, male soccer players completed three speed-endurance training trials, receiving whey protein (WP), soy protein (SP) or an isoenergetic placebo (PL; maltodextrin) according to a randomized, double-blind, crossover, repeated-measures design. A pre-loading period was applied in each trial during which protein supplementation was individually adjusted to reach a total protein intake of 1.5 g/kg/day, whereas in PL protein intake was adjusted at 0.8-1 g/kg/day. Following pre-loading, two speed-endurance training sessions (1 and 2) were performed 1 day apart, over a 3-day experimental period. During each session, field activity and heart rate were continuously monitored using global positioning system and heart rate monitors, respectively. Performance (isokinetic strength of knee extensors and flexors, maximal voluntary isometric contraction, speed, repeated sprint ability, countermovement jump), muscle damage (delayed-onset of muscle soreness, creatine kinase activity) and redox status (glutathione, total antioxidant capacity, protein carbonyls) were evaluated at baseline (pre), following pre-loading (post-load), and during recovery from speed-endurance training. RESULTS: High-intensity and high-speed running decreased (P ≤ 0.05) during speed-endurance training in all trials, but WP and SP mitigated this response. Isokinetic strength, maximal voluntary isometric contraction, 30-m speed, repeated sprint ability and countermovement jump performance were similarly deteriorated during recovery following speed-endurance training in all trials (P ≤ 0.05). 10 m speed was impaired at 24 h only in PL. Delayed-onset of muscle soreness, creatine kinase, total antioxidant capacity and protein carbonyls increased and glutathione decreased equally among trials following speed-endurance training (P ≤ 0.05), with SP inducing a faster recovery of protein carbonyls only at 48 h (P ≤ 0.05) compared to WP and PL. CONCLUSIONS: In conclusion, increasing daily protein intake to 1.5 g/kg through ingestion of either whey or soy protein supplements mitigates field performance deterioration during successive speed-endurance training sessions without affecting exercise-induced muscle damage and redox status markers. TRIAL REGISTRATION: Name of the registry: clinicaltrials.gov. TRIAL REGISTRATION: NCT03753321 . Date of registration: 12/10/2018.


Subject(s)
Athletic Performance/physiology , Dietary Supplements , Endurance Training , Myalgia/prevention & control , Soccer/physiology , Soybean Proteins/administration & dosage , Whey Proteins/administration & dosage , Antioxidants/metabolism , Competitive Behavior/physiology , Creatine Kinase/blood , Cross-Over Studies , Double-Blind Method , Glutathione/blood , Humans , Male , Muscle Fatigue/physiology , Muscle, Skeletal/injuries , Muscle, Skeletal/metabolism , Oxidation-Reduction , Protein Carbonylation , Young Adult
16.
Int J Sports Physiol Perform ; 16(9): 1270-1280, 2021 09 01.
Article in English | MEDLINE | ID: mdl-33626506

ABSTRACT

PURPOSE: To examine the recovery kinetics of exercise-induced muscle damage (EIMD), neuromuscular fatigue, and performance following small-sided games (SSGs) of different densities in soccer. METHODS: Ten male players randomly completed 3 trials: a control trial (no SSGs), 4v4 SSGs (62.5 m2/player), and 8v8 SSGs (284.4 m2/player). External and internal load were monitored using GPS technology, heart-rate monitors, and rating of perceived exertion. Delayed-onset muscle soreness (DOMS), creatine kinase (CK), isokinetic strength, countermovement jump (CMJ), and sprint were determined at baseline, as well as at 24, 48, and 72 hours post-SSGs. Neuromuscular fatigue was assessed at baseline and at 1, 2, and 3 hours post-SSGs. RESULTS: DOMS increased (P < .05) in 4v4 for 72 hours and in 8v8 for 24 hours with that of knee flexors being more pronounced than that of extensors. CK increased (P < .05) in 4v4 for 72 hours and in 8v8 for 24 hours. Neuromuscular fatigue increased (P < .05) in 4v4 for 2 hours and in 8v8 for 3 hours. Strength declined (P < .05) in 4v4 for 48 hours and in 8v8 for 72 hours. CMJ decreased (P < .05) in 4v4 for 24 hours and in 8v8 for 48 hours. Sprint decreased (P < .05) for 48 hours in 4v4 and for 72 hours in 8v8. CONCLUSIONS: SSGs are associated with a prolonged rise of EIMD and induce short-term neuromuscular fatigue and slow recovery kinetics of strength, jump, and sprinting performance. The time for complete recovery is longer for SSGs of lower density.


Subject(s)
Athletic Performance , Running , Soccer , Athletic Performance/physiology , Humans , Kinetics , Male , Myalgia , Running/physiology , Soccer/physiology
17.
J Sports Sci ; 39(5): 503-512, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33054601

ABSTRACT

This study investigated the effects of a 10-month high-intensity interval-type neuromuscular training programme on musculoskeletal fitness in overweight and obese women. Forty-nine inactive females (36.4 ± 4.4 yrs) were randomly assigned to either a control (N = 21), a training (N = 14, 10 months) or a training-detraining group (N = 14, 5 months training followed by 5 months detraining). Training used progressive loaded fundamental movement patterns with prescribed work-to-rest intervals (1:2, 1:1, 2:1) in a circuit fashion (2-3 rounds). Muscular strength and endurance, flexibility, passive range of motion (PRoM), static balance, functional movement screen (FMS) and bone mass density (BMD) and content (BMC) were measured at pre-, mid-, and post-intervention. Ten months of training induced greater changes than the controls in (i) BMD (+1.9%, p < 0.001) and BMC (+1.5%, p = 0.023) ii) muscular strength (25%-53%, p = 0.001-0.005); iii) muscular endurance (103%-195%, p < 0.001); and iv) mobility (flexibility: 40%, p < 0.001; PRoM [24%-53%, p = 0.001-0.05;]; balance: 175%, p = 0.058; FMS: +58%, p < 0.001). The response rate to training was exceptionally high (86-100%). Five months of detraining reduced but not abolished training-induced adaptations. These results suggest that a hybrid-type exercise approach integrating endurance-based bodyweight drills with resistance-based alternative modes into a real-world gym setting may promote musculoskeletal fitness in overweight and obese women.


Subject(s)
Adaptation, Physiological , High-Intensity Interval Training/methods , Overweight/therapy , Adult , Female , Humans , Movement/physiology , Muscle Strength/physiology , Physical Fitness/physiology , Pliability/physiology , Postural Balance/physiology , Range of Motion, Articular/physiology
18.
Free Radic Biol Med ; 161: 125-138, 2020 12.
Article in English | MEDLINE | ID: mdl-33039652

ABSTRACT

Skeletal muscle satellite cells (SCs) are indispensable for tissue regeneration, remodeling and growth. Following myotrauma, SCs are activated, and assist in tissue repair. Exercise-induced muscle damage (EIMD) is characterized by a pronounced inflammatory response and the production of reactive oxygen species (ROS). Experimental evidence suggests that SCs kinetics (the propagation from a quiescent to an activated/proliferative state) following EIMD is redox-dependent and interconnected with changes in the SCs microenvironment (niche). Animal studies have shown that following aseptic myotrauma, antioxidant and/or anti-inflammatory supplementation leads to an improved recovery and skeletal muscle regeneration through enhanced SCs kinetics, suggesting a redox-dependent molecular mechanism. Although evidence suggests that antioxidant/anti-inflammatory compounds may prevent performance deterioration and enhance recovery, there is lack of information regarding the redox-dependent regulation of SCs responses following EIMD in humans. In this review, SCs kinetics following aseptic myotrauma, as well as the intrinsic redox-sensitive molecular mechanisms responsible for SCs responses are discussed. The role of redox status on SCs function should be further investigated in the future with human clinical trials in an attempt to elucidate the molecular pathways responsible for muscle recovery and provide information for potential nutritional strategies aiming at performance recovery.


Subject(s)
Athletic Performance , Satellite Cells, Skeletal Muscle , Animals , Antioxidants/metabolism , Humans , Muscle, Skeletal/metabolism , Oxidation-Reduction
19.
Int J Sports Physiol Perform ; 15(3): 395-408, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31751937

ABSTRACT

PURPOSE: To determine the recovery kinetics of performance, muscle damage, and neuromuscular fatigue following 2 speed-endurance production training (SEPT) protocols in soccer. METHODS: Ten well-trained, male soccer athletes randomly completed 3 trials: work-to-rest ratio (SEPT) 1:5, SEPT/1:8, and a control trial. Training load during SEPT was monitored using global positioning system and heart-rate monitors. Performance (isokinetic strength of knee extensors and flexors, speed, and countermovement jump) and muscle damage (delayed-onset muscle soreness [DOMS] and creatine kinase) were evaluated at baseline and at 0, 24, 48 and 72 h posttraining. Maximal voluntary contraction (fatigue index) of knee extensors and flexors was additionally assessed at 1, 2, and 3 h posttraining. RESULTS: Fatigue increased (P < .05) in SEPT/1:5 (∼4-30%) for 3 h and in SEPT/1:8 (∼8-17%) for 2 h. Strength performance declined (P < .05) in both SEPT trials (∼5-20%) for 48 h. Speed decreased (∼4-18%; P < .05) for 72 h in SEPT/1:5 and for 48 h in SEPT/1:8. Countermovement-jump performance decreased (∼7-12%; P < .05) in both SEPT trials for 24 h. DOMS increased (P < .05) in SEPT/1:5 (∼2-fold) for 72 and in SEPT/1:8 (∼1- to 2-fold) for 48 h. Creatine kinase increased (∼1- to 2-fold, P < .05) in both SEPT trials for 72 h. CONCLUSIONS: SEPT induces short-term neuromuscular fatigue; provokes a prolonged deterioration of strength (48 h), speed (72 h), and jump performance (24 h); and is associated with a prolonged (72-h) rise of DOMS and creatine kinase. Time for recovery is reduced when longer work-to-rest ratios are applied. Fitness status may affect quality of SEPT and recovery kinetics.

20.
J Sports Sci Med ; 18(3): 523-536, 2019 09.
Article in English | MEDLINE | ID: mdl-31427875

ABSTRACT

Protein supplementation is a major nutritional practice among professional and amateur team-sport athletes representing a market of $5 billion in the USA alone. This practice, however, may not be supported by evidence-based science. Our objective as to present a thorough review of literature investigating the effects of protein supplementation on performance recovery and exercise-induced muscle damage following team-sport activity. PubMed-derived, full English language articles investigating the effects of protein-based supplementation/feeding on skeletal muscle performance, muscle damage and inflammatory status during recovery following team-sport activity were included. Studies investigated professional or amateur team-sport athletes participating in regular training and competition as well as examining the impact of protein supplementation on performance, muscle damage/soreness and inflammatory markers after team-sport activity. Finally, ten articles (150 participants) met the inclusion criteria. Experimental designs were evaluated for confounders. All protocols employing team-sport activity increased systemic muscle damage indicators and inflammatory markers and deteriorated performance during recovery. Protein-based supplementation attenuated the rise in muscle damage markers and enhanced performance recovery in six (60% of the studies included) and three (30% of the studies included) out of 10 studies, respectively. In contrast, immunity and muscle soreness remained unaffected by protein ingestion, independent of dosage and distribution pattern. In conclusion, there are limited and inconsistent data showing that protein supplementation may enhance performance recovery following team-sport activity despite an attenuation of indirect markers of muscle damage. Interpretation of results is limited by small sample sizes, high variability in tested supplements, participants' training level, length of recovery periods, absence of direct measurement of myofibrillar disruption, protein turnover and protein metabolism, and lack of dietary monitoring during experimentation.


Subject(s)
Athletic Performance/physiology , Dietary Proteins/administration & dosage , Dietary Supplements , Myalgia/prevention & control , Sports/physiology , Competitive Behavior/physiology , Exercise/physiology , Humans , Inflammation/prevention & control , Physical Conditioning, Human
SELECTION OF CITATIONS
SEARCH DETAIL
...