Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol Methods ; 247: 28-31, 2017 09.
Article in English | MEDLINE | ID: mdl-28506631

ABSTRACT

Maintaining a healthy, continuous immortalized cell line is essential for rabies laboratories that perform virus isolation assays and test for the presence of viral neutralizing antibodies. Individuals who routinely work with rabies virus, such as rabies laboratory employees, or those who may have a high potential for exposure to rabies virus, including veterinarians, should be tested for the presence of anti-rabies viral neutralizing antibodies (VNA) every 6-24 months, depending on potential exposure level. The gold standard for serum neutralization assays require the use of live rabies virus and cells that are sensitive to rabies virus infection. Additionally, virus isolation assays are routinely performed in rabies laboratories as a back-up for the direct fluorescent antibody test (dFAT). Currently there are no guidelines or publications recommending the use of low, intermediate, or high passage cell lines in rabies assays. In this study, we compared the sensitivity of intermediate, high, and extremely high passaged neuroblastomas to rabies virus using virus isolation, serum neutralization, and real time RT-PCR techniques. Additionally, cells were examined microscopically to determine changes in morphology and dissemination of rabies virus antigen between intermediate, high, and extremely high passage cells. No significant difference was found between cell passage numbers and viral susceptibility between intermediate and high passaged cells. However, extremely high passaged cells (≥1200 passages) were less susceptible to viral infection and/or produced less virus following inoculation. As a result, rabies laboratories that use viral isolation and serum neutralization assays should regularly assess cell susceptibility to ensure the integrity and repeatability of the test.


Subject(s)
Neurons/virology , Rabies virus/growth & development , Tissue Culture Techniques/methods , Viral Tropism , Cell Line, Tumor , Humans , Neutralization Tests/methods , Serial Passage , Virus Cultivation/methods
2.
J Wildl Dis ; 51(1): 287-9, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25380356

ABSTRACT

All mammals are believed susceptible to rabies virus infection, yet transmission from nonreservoir hosts to humans is uncommon. However, interactions between nonreservoir hosts and humans occur frequently and risk of exposure increases where rabies is enzootic. We describe rabies and apparent pantropism of rabies virus in a beaver (Castor canadensis).


Subject(s)
Antigens, Viral/isolation & purification , Polymerase Chain Reaction/veterinary , Rabies virus/isolation & purification , Rabies/veterinary , Rodentia , Viral Load/veterinary , Animals , Bites and Stings , Female , Humans , Male , Middle Aged , Rabies/diagnosis
3.
PLoS One ; 8(5): e64808, 2013.
Article in English | MEDLINE | ID: mdl-23741396

ABSTRACT

The study of rabies virus infection in bats can be challenging due to quarantine requirements, husbandry concerns, genetic differences among animals, and lack of medical history. To date, all rabies virus (RABV) studies in bats have been performed in wild caught animals. Determining the RABV exposure history of a wild caught bat based on the presence or absence of viral neutralizing antibodies (VNA) may be misleading. Previous studies have demonstrated that the presence of VNA following natural or experimental inoculation is often ephemeral. With this knowledge, it is difficult to determine if a seronegative, wild caught bat has been previously exposed to RABV. The influence of prior rabies exposure in healthy, wild caught bats is unknown. To investigate the pathogenesis of RABV infection in bats born in captivity (naïve bats), naïve bats were inoculated intramuscularly with one of two Eptesicus fuscus rabies virus variants, EfV1 or EfV2. To determine the host response to a heterologous RABV, a separate group of naïve bats were inoculated with a Lasionycteris noctivagans RABV (LnV1). Six months following the first inoculation, all bats were challenged with EfV2. Our results indicate that naïve bats may have some level of innate resistance to intramuscular RABV inoculation. Additionally, naïve bats inoculated with the LnV demonstrated the lowest clinical infection rate of all groups. However, primary inoculation with EfV1 or LnV did not appear to be protective against a challenge with the more pathogenic EfV2.


Subject(s)
Chiroptera/virology , Rabies virus , Rabies/virology , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , Chiroptera/immunology , Genetic Variation , Rabies/immunology , Rabies virus/genetics , Rabies virus/immunology
4.
J Virol ; 87(16): 9008-15, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23741002

ABSTRACT

Rabies virus (RABV) maintenance in bats is not well understood. Big brown bats (Eptesicus fuscus), little brown bats (Myotis lucifugus), and Mexican free-tailed bats (Tadarida brasiliensis) are the most common bats species in the United States. These colonial bat species also have the most frequent contact with humans and domestic animals. However, the silver-haired bat (Lasionycteris noctivagans) RABV is associated with the majority of human rabies virus infections in the United States and Canada. This is of interest because silver-haired bats are more solitary bats with infrequent human interaction. Our goal was to determine the likelihood of a colonial bat species becoming infected with and transmitting a heterologous RABV. To ascertain the potential of heterologous RABV infection in colonial bat species, little brown bats were inoculated with a homologous RABV or one of two heterologous RABVs. Additionally, to determine if the route of exposure influenced the disease process, bats were inoculated either intramuscularly (i.m.) or subcutaneously (s.c.) with a homologous or heterologous RABV. Our results demonstrate that intramuscular inoculation results in a more rapid progression of disease onset, whereas the incubation time in bats inoculated s.c. is significantly longer. Additionally, cross protection was not consistently achieved in bats previously inoculated with a heterologous RABV following a challenge with a homologous RABV 6 months later. Finally, bats that developed rabies following s.c. inoculation were significantly more likely to shed virus in their saliva and demonstrated increased viral dissemination. In summary, bats inoculated via the s.c. route are more likely to shed virus, thus increasing the likelihood of transmission.


Subject(s)
Rabies virus/pathogenicity , Rabies/veterinary , Animals , Chiroptera , Disease Susceptibility , Rabies/pathology , Rabies/transmission , Rabies/virology , Rabies virus/immunology , Virus Shedding
SELECTION OF CITATIONS
SEARCH DETAIL
...