Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cell Res ; 72: 103209, 2023 10.
Article in English | MEDLINE | ID: mdl-37769384

ABSTRACT

Phelan-McDermid syndrome (PMS) is a rare genetic disease characterized by a global developmental delay with autism spectrum disorder. PMS is caused by loss of function mutations in the SHANK3 gene leading to SHANK3 protein haploinsufficiency. This study describes the generation of isogenic clones produced from one male human embryonic stem cell line with deletions in SHANK3, in a heterozygous or homozygous manner, using CRISPR/Cas9 indel methodology. Differentiation of these clones into different neuronal lineages will help understanding PMS etiology and find treatments for PMD patients. (85/100 words).


Subject(s)
Autism Spectrum Disorder , Human Embryonic Stem Cells , Humans , Male , Human Embryonic Stem Cells/metabolism , Autism Spectrum Disorder/genetics , CRISPR-Cas Systems/genetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Clone Cells/metabolism
2.
Front Pharmacol ; 14: 1152180, 2023.
Article in English | MEDLINE | ID: mdl-37435497

ABSTRACT

Introduction: Alteration in the development, maturation, and projection of dopaminergic neurons has been proposed to be associated with several neurological and psychiatric disorders. Therefore, understanding the signals modulating the genesis of human dopaminergic neurons is crucial to elucidate disease etiology and develop effective countermeasures. Methods: In this study, we developed a screening model using human pluripotent stem cells to identify the modulators of dopaminergic neuron genesis. We set up a differentiation protocol to obtained floorplate midbrain progenitors competent to produce dopaminergic neurons and seeded them in a 384-well screening plate in a fully automated manner. Results and Discussion: These progenitors were treated with a collection of small molecules to identify the compounds increasing dopaminergic neuron production. As a proof-of-principle, we screened a library of compounds targeting purine- and adenosine-dependent pathways and identified an adenosine receptor 3 agonist as a candidate molecule to increase dopaminergic neuron production under physiological conditions and in cells invalidated for the HPRT1 gene. This screening model can provide important insights into the etiology of various diseases affecting the dopaminergic circuit development and plasticity and be used to identify therapeutic molecules for these diseases.

3.
Stem Cell Res ; 71: 103144, 2023 09.
Article in English | MEDLINE | ID: mdl-37331109

ABSTRACT

Lesch-Nyhan disease (LND) is a X-linked genetic disease affecting boys characterized by complex neurological and neuropsychiatric symptoms. LND is caused by loss of function mutations in the HPRT1 gene leading to decrease activity of hypoxanthine-guanine phosphoribosyl transferase enzyme (HGPRT) and altered purine salvage pathway (Lesch and Nyhan, 1964). This study describes the generation of isogenic clones with deletions in HPRT1 produced from one male human embryonic stem cell line using CRISPR/Cas9 strategy. Differentiation of these cells into different neuronal subtypes will help elucidating the neurodevelopmental events leading to LND and develop therapeutic strategies for this devastating neurodevelopmental disorder.


Subject(s)
Human Embryonic Stem Cells , Lesch-Nyhan Syndrome , Humans , Male , Lesch-Nyhan Syndrome/genetics , Lesch-Nyhan Syndrome/metabolism , Hypoxanthine Phosphoribosyltransferase/genetics , Hypoxanthine Phosphoribosyltransferase/metabolism , CRISPR-Cas Systems/genetics , Gene Knockout Techniques , Human Embryonic Stem Cells/metabolism
4.
PLoS One ; 18(4): e0284402, 2023.
Article in English | MEDLINE | ID: mdl-37104252

ABSTRACT

Membranes contain lipids that are composed of fatty acids (FA) and a polar head. Membrane homeostasis is crucial for optimal bacterial growth and interaction with the environment. Bacteria synthesize their FAs via the FASII pathway. Gram-positive bacteria can incorporate exogenous FAs which need to be phosphorylated to become substrate of the lipid biosynthetic pathway. In many species including staphylococci, streptococci and enterococci, this phosphorylation is carried out by the Fak complex, which is composed of two subunits, FakA and FakB. FakA is the kinase. FakB proteins are members of the DegV family, proteins known to bind FAs. Two or three FakB types have been identified depending on the bacterial species and characterized by their affinity for saturated and/or unsaturated FAs. Some species such as Streptococcus pyogenes, which causes a wide variety of diseases ranging from mild non-invasive to severe invasive infections, possess an uncharacterized additional DegV protein. We identify here this DegV member as a fourth FakB protein, named FakB4. The fakB4 gene is co-regulated with FASII genes suggesting an interaction with endogenous fatty acids. fakB4 deletion has no impact on membrane phospholipid composition nor on the percentage of other major lipids. However, the fakB4 mutant strain produced more lipids and more extracellular membrane vesicles than the wild-type strain. This suggests that FakB4 is involved in endogenous FA binding and controls FA storage or catabolism resulting in a limitation of extracellular FA release via membrane vesicles.


Subject(s)
Membrane Lipids , Streptococcus pyogenes , Membrane Lipids/metabolism , Streptococcus pyogenes/metabolism , Bacterial Proteins/metabolism , Fatty Acids/metabolism , Phospholipids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...