Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 12(12)2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35739888

ABSTRACT

One hundred and eighty individually housed piglets with an initial body weight of 7.63 ± 0.98 kg (at 28 days of age) were fed a diet containing either 153, 493, 1022, 1601, 2052 or 2407 mg zinc/kg (added Zn as zinc oxide; ZnO) from day 0-21 post weaning to determine the optimal level of Zn for weaned piglets. Body weight, feed intake and faecal scores were recorded, and blood and faecal samples were collected. Dietary Zn content quadratically affected both feed intake and gain in the first two weeks, with an approximately 1400 mg Zn/kg diet and a Zn intake of 400 mg/day as the optimal levels. The relative risk of diarrhoea increased up to 60% at day 7 and 14 if serum Zn status dropped below the weaning level (767 µg/L), and maintain the weaning serum Zn status required approximately 1100 mg Zn/kg (166 mg Zn/day) during week 1. Blood markers of intestinal integrity (D-lactate and diamine oxidase) were unaffected by dietary Zn, and dietary Zn levels of 1022 and 1601 mg/kg did not affect the faecal numbers of total bacteria, Lactobacilli and E. Coli bacteria compared to 153 mg Zn/kg. These results indicate that the requirement for Zn in newly weaned piglets may be substantially higher than currently assumed.

2.
Poult Sci ; 99(4): 1946-1955, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32241475

ABSTRACT

Providing environmental enrichment for broilers is a potential strategy to increase welfare, activity, and health. The aim of this study was to evaluate the effect of environmental enrichment on health and leg bone characteristics of broilers. One control and 8 types of enrichment were included: 2 distances between food and water (7 and 3.5 m), roughage, vertical panels, straw bales, 2 platforms (30 and 5 cm), and a lowered stocking density (34 kg/m2). Birds were kept according to conventional Danish guidelines. The study included 58 pens with approximately 500 birds each. On day 35 of age, 25 birds per pen were killed and included in a postmortem analysis of wooden breast, body condition scores, pathological conditions (femoral head necrosis, arthritis, tenosynovitis, fractures, tibial dyschondroplasia, and twisted tibiotarsus), muscle width of the lower leg, and tibiotarsus properties (bone strength, weight, length, and proximal diameter, middle diameter, and distal diameter). It was predicted that environmental enrichment would have a positive effect on pathology with the exceptions that environmental enrichment that increased activity would pose a risk factor for wooden breast development, and straw bales would be a risk factor for bacterial infections (arthritis, tenosynovitis, and femoral head necrosis). Furthermore, it was hypothesized that enriched groups would have increased muscle width, bone strength, and dimensions of the tibiotarsus. Broilers with 7 m between food and water had a longer distal diameter of the tibiotarsus than those with straw bales (P = 0.04). The birds provided with vertical panels had wider leg muscle than the treatments with roughage (P = 0.045), 3.5 m distance (P = 0.049), and straw bales (P = 0.044). No effects were found for the remaining outcomes. These results suggest that provision of vertical panels and increased distance between resources can result in larger muscle and bone dimension, possibly having a positive effect on leg health. Furthermore, the provision of environmental enrichment does not appear to be a risk factor for wooden breast or bacterial infection.


Subject(s)
Animal Welfare , Bone Development , Chickens/physiology , Housing, Animal , Animals , Bone and Bones/pathology , Bone and Bones/physiology , Chickens/growth & development , Poultry Diseases/etiology , Poultry Diseases/pathology
3.
J Sci Food Agric ; 99(7): 3628-3634, 2019 May.
Article in English | MEDLINE | ID: mdl-30628081

ABSTRACT

BACKGROUND: Phosphorus (P) supply is essential for bone mineralisation. Reduced P may result in osteopenia, whereas excessive P may result in environmental impacts. The objective was to study the long-term effect of three dietary P levels on net bone mineralisation in growing-finishing pigs. Eighteen female pigs were fed low P (LP (4.1)), medium P (MP (6.2)) or high P (HP (8.9 g P kg-1 DM)) from 39.7 until 110 kg. Trabecular, cortical and overall bone mineral density (BMD), ash, calcium (Ca) and P were determined after slaughter. RESULTS: The LP diet generally reduced the BMD, ash, Ca and P in all bones, though all measures were markedly lowered in femur compared with humerus. The trabecular BMD in LP pigs was only different in the distal section compared to the MP-fed pigs (P < 0.05). In addition, ash, Ca and P were lower in the proximal and distal sections. No significant effect of HP was seen. Conclusively, LP caused lower net bone mineralisation, mainly of femur. The trabecular tissue of the distal bones seems to be most metabolically active. CONCLUSIONS: The MP level was sufficient for net bone mineralisation. Femur is recommended for studying bone fragility whereas humerus seems useful to study increased P retention. © 2019 The Authors. Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Bone and Bones/metabolism , Phosphorus, Dietary/metabolism , Swine/metabolism , Animal Feed/analysis , Animals , Bone Density , Bone Development , Calcium, Dietary/analysis , Calcium, Dietary/metabolism , Female , Phosphorus, Dietary/analysis , Swine/growth & development
4.
J Anim Sci ; 96(11): 4693-4703, 2018 Nov 21.
Article in English | MEDLINE | ID: mdl-30085053

ABSTRACT

Phosphorus (P) is essential for building and maintaining a healthy and strong skeleton. Moreover, dietary P supply may play a role for bone turnover, and the excretion of bone turnover metabolites may be useful as markers for sufficient dietary P supply. The objective was to study the long-term effects of low, medium, and high dietary P supply on bone metabolism in terms of serum concentration and urinary excretion of bone turnover components and metabolites in healthy growing-finishing pigs compared with bone mineral content (BMC) and bone mineral density (BMD) of humerus and femur. Pigs were fed diets containing low [LP; 4.1 g/kg dry matter (DM)], medium (MP; 6.2 g/kg DM), or high dietary P (HP; 8.9 g/kg DM) from 39.7 kg body weight (BW) until slaughter at 110 kg BW. Urine and blood were collected at 40, 70, and 110 kg BW while bones were collected at slaughter. Serum was analyzed for osteocalcin (OC), bone alkaline phosphatase (BAP), and C-terminal telopeptides of type I collagen (CTX-I), whereas urine was analyzed for pyridinoline (PYD), deoxypyridinoline (DPD), CTX-I, hydroxylysine (HYL), galactosyl-hydroxylysine (GAL-HYL), glycosyl-galactosyl-hydroxylysine (GLC-GAL-HYL), and hydroxyproline (HYP). Humerus and femur were analyzed for BMC and BMD. The LP diet caused reduced OC and increased BAP and CTX-I concentrations in serum. Furthermore, BAP was increased in response to the HP diet. Urine metabolites of bone resorption were all increased in pigs fed the LP diet, but only a few responses were obtained in response to the HP diet. Furthermore, age-related decreases were identified for BAP, HYL, GAL-HYL, and GLC-GAL-HYL. Bone mineral content and BMD were markedly lowered in pigs fed the LP diet but were not affected in pigs fed the HP diet. In conclusion, OC, BAP, and CTX-I in serum have proved useful for P adequacy in growing-finishing pigs. In addition, urine bone resorption metabolites have also proved useful for P adequacy and analysis of PYD, DPD, and CTX-I was considered to be the most relevant markers due to their specificity for bone and their negative correlation with BMD, BMC, ash, calcium (Ca), and P contents. Finally, DPD may be the preferred marker in long-term P feeding assessments.


Subject(s)
Biomarkers/analysis , Bone Density/drug effects , Calcium, Dietary/pharmacology , Phosphorus, Dietary/pharmacology , Swine/physiology , Animal Feed/analysis , Animals , Body Weight/drug effects , Bone Resorption/drug therapy , Bone and Bones/drug effects , Bone and Bones/physiology , Diet/veterinary , Female
5.
J Agric Food Chem ; 65(2): 281-290, 2017 Jan 18.
Article in English | MEDLINE | ID: mdl-28004575

ABSTRACT

The angiopoietin-like 4 (ANGPLT4) protein is involved in lipid metabolism and is known to inhibit lipoprotein lipase in the bloodstream. We investigated the effect of milk on intestinal ANGPTL4 and the metabolic profile of growing pigs and the effect of free fatty acids (FFAs) on ANGPTL4 in ex vivo and in vitro assays. Feeding pigs whole milk increased intestinal ANGPTL4 mRNA and increased fecal excretion of long-chain FFA compared to the control group fed soybean oil (n = 9). Furthermore, FFAs (C4-C8) induced ANGPTL4 gene expression in porcine intestinal tissue mounted in Ussing chambers and ANGPTL4 protein secretion to both the apical and basolateral sides of intestinal Caco-2 cells on permeable membranes. Altogether, these results support an ANGPTL4-induced secretion of fecal FFAs. Urinary levels of FFAs (C4-C12), 3-hydroxyadipic acid, and suberic acid were also increased by milk consumption, indicating higher energy expenditure compared to the control group.


Subject(s)
Angiopoietins/metabolism , Fatty Acids/pharmacokinetics , Feces/chemistry , Intestinal Mucosa/metabolism , Milk , Angiopoietin-Like Protein 4 , Angiopoietins/genetics , Animals , Caco-2 Cells , Diet , Fatty Acids/metabolism , Fatty Acids/urine , Female , Gene Expression Regulation , Humans , Soybean Oil/pharmacology , Sus scrofa
6.
Biotechnol Lett ; 39(2): 289-295, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27812824

ABSTRACT

OBJECTIVES: To generate tryptophan-overproducing Bacillus subtilis strains for in situ use in pigs, to reduce the feed cost for farmers and nitrogen pollution. RESULTS: A novel concept has been investigated-to generate B. subtilis strains able to produce tryptophan (Trp) in situ in pigs. Mutagenesis by UV was combined with selection on Trp and purine analogues in an iterative process. Two mutants from different wild types were obtained, mutant 1 (M1) produced 1 mg Trp/l and mutant 2 (M2) 14 mg Trp/l. Genome sequence analysis revealed that M1 had three single nuclear polymorphisms (SNPs) and M2 had two SNPs compared to the wild type strains. In both mutants SNPs were found in genes regulating tryptophan synthesis. Reverse transcription PCR confirmed up-regulation of the tryptophan synthesis genes in both mutants, the expression was up to 3 times higher in M2 than in M1. CONCLUSIONS: Tryptophan-excreting B. subtilis strains were obtained with UV-mutagenesis and analogue selection and can be used in animal feed applications.


Subject(s)
Bacillus subtilis/metabolism , Tryptophan/metabolism , Animals , Bacillus subtilis/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Mutation , Operon/genetics , Swine , Ultraviolet Rays
7.
J Proteome Res ; 15(12): 4195-4207, 2016 12 02.
Article in English | MEDLINE | ID: mdl-27704848

ABSTRACT

The metabolic response in plasma and urine of pigs when feeding an optimum level of branched chain amino acids (BCAAs) for best growth performance is unknown. The objective of the current study was to identify the metabolic phenotype associated with the BCAAs intake level that could be linked to the animal growth performance. Three dose-response studies were carried out to collect blood and urine samples from pigs fed increasing levels of Ile, Val, or Leu followed by a nontargeted LC-MS approach to characterize the metabolic profile of biofluids when dietary BCAAs are optimum for animal growth. Results showed that concentrations of plasma hypoxanthine and tyrosine (Tyr) were higher while concentrations of glycocholic acid, tauroursodeoxycholic acid, and taurocholic acid were lower when the dietary Ile was optimum. Plasma 3-methyl-2-oxovaleric acid and creatine were lower when dietary Leu was optimum. The optimum dietary Leu resulted in increased urinary excretion of ascorbic acid and choline and relatively decreased excretion of 2-aminoadipic acid, acetyl-dl-valine, Ile, 2-methylbutyrylglycine, and Tyr. In conclusion, plasma glycocholic acid and taurocholic acid were discriminating metabolites to the optimum dietary Ile. The optimum dietary Leu was associated with reduced plasma creatine and urinary 2-aminoadipic acid and elevated urinary excretion of ascorbic acid and choline. The optimum dietary Val had a less pronounced metabolic response reflected in plasma or urine than other BCAA.


Subject(s)
Amino Acids, Branched-Chain/metabolism , Metabolomics/methods , Plasma/chemistry , Urine/chemistry , Amino Acids, Branched-Chain/administration & dosage , Animals , Chromatography, Liquid , Mass Spectrometry , Metabolome , Metabolomics/instrumentation , Plasma/metabolism , Swine
8.
J Environ Qual ; 43(6): 2086-95, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25602225

ABSTRACT

Ammonia (NH) volatilization from intensive livestock production is a threat to natural ecosystems. This study investigated pig diet manipulation by 1% (w/w) benzoic acid (BA) amendment and lowering of dietary electrolyte balance through substituting 1.4% (w/w) CaCO with 2.0% (w/w) CaCl. Urine and feces were collected separately from 24 pigs fed one of four diets (Control, +BA, +CaCl, +BA+CaCl) in metabolic cages and mixed as slurry. During 103 d of storage, all acidifying diets consistently reduced pH in the slurry by 0.4 to 0.6 units. There was a strong relationship between slurry pH and NH emissions, which were considerably reduced by the three acidifying diets. The +BA diet decreased NH emission by 28%, the +CaCl diet by 37%, and the combined +BA and +CaCl diet by 40%. Acidifying diets had no effect on S cycling or emission of volatile S compounds under the prevailing conditions of restricted S feeding. Methane (CH) emissions were increased by 73% in diets with CaCl. An initial delay in CH emissions was investigated in a separate experiment with manipulation of pH (5.4, 6.7, or 8.8) and inoculation with adapted pig slurry (0, 4, 11, or 19%), which showed that methanogenic potential, rather than inhibitory effects of the chemical environment, caused the delay. In conclusion, NH emissions from slurry could be reduced by addition of BA to pig diets or by controlling the dietary electrolyte balance, but there was no additive effect of combining the two strategies. However, CH emissions from slurry may increase with acidifying diets.

9.
J Environ Qual ; 39(3): 1097-107, 2010.
Article in English | MEDLINE | ID: mdl-20400605

ABSTRACT

Supplementation of benzoic acid to pig diets reduces the pH of urine and may thereby affect emissions of ammonia and other gases from slurry, including sulfur-containing compounds that are expected to play a role in odor emission. Over a period of 112 d, we investigated hydrogen sulfide (H(2)S), methanethiol (MT), dimethyl sulfide (DMS), dimethyl disulfide (DMDS), and dimethyl trisulfide (DMTS), as well as ammonia and methane emissions from stored pig slurry. The slurry was derived from a feeding experiment with four pig diets in a factorial design with 2% (w/w) benzoic acid and 1% (w/w) methionine supplementation as treatments. Benzoic acid reduced slurry pH by 1 to 1.5 units and ammonia emissions by 60 to 70% for up to 2 mo of storage, and a considerable, but transitory reduction of methane emissions was also observed after 4 to 5 wk. All five volatile sulfur (S) compounds were identified in gas emitted from the slurry of the control treatment, which came from pigs fed according to Danish recommendations for amino acids and minerals. The emission patterns of volatile S compounds suggested an intense cycling between pools of organic S in the slurries, with urinary sulfate as the main source. Diet supplementation with methionine significantly increased all S emissions. Diet supplementation with benzoic acid reduced emissions of H(2)S and DMTS compared with the control slurry and moderately increased the concentrations of MT. Sulfur gas emissions were influenced by a strong interaction between methionine and benzoic acid treatments, which caused a significant increase in emissions of especially MT, but also of DMDS. In conclusion, addition of 2% benzoic acid to pig diets effectively reduced ammonia volatilization, but interactions with dietary S may increase odor problems.


Subject(s)
Ammonia/chemistry , Animal Feed/analysis , Methane/chemistry , Odorants , Sulfur/chemistry , Waste Disposal, Fluid , Animals , Benzoic Acid/chemistry , Benzoic Acid/metabolism , Cresols/chemistry , Cresols/metabolism , Diet/veterinary , Indoles/chemistry , Indoles/metabolism , Methionine/chemistry , Methionine/metabolism , Organic Chemicals , Swine , Time Factors , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...