Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Crit Care ; 26(1): 292, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36167550

ABSTRACT

BACKGROUND: Ventilator-associated pneumonia (VAP) is common in patients with severe SARS-CoV-2 pneumonia. The aim of this ancillary analysis of the coVAPid multicenter observational retrospective study is to assess the relationship between adjuvant corticosteroid use and the incidence of VAP. METHODS: Planned ancillary analysis of a multicenter retrospective European cohort in 36 ICUs. Adult patients receiving invasive mechanical ventilation for more than 48 h for SARS-CoV-2 pneumonia were consecutively included between February and May 2020. VAP diagnosis required strict definition with clinical, radiological and quantitative microbiological confirmation. We assessed the association of VAP with corticosteroid treatment using univariate and multivariate cause-specific Cox's proportional hazard models with adjustment on pre-specified confounders. RESULTS: Among the 545 included patients, 191 (35%) received corticosteroids. The proportional hazard assumption for the effect of corticosteroids on the incidence of VAP could not be accepted, indicating that this effect varied during ICU stay. We found a non-significant lower risk of VAP for corticosteroid-treated patients during the first days in the ICU and an increased risk for longer ICU stay. By modeling the effect of corticosteroids with time-dependent coefficients, the association between corticosteroids and the incidence of VAP was not significant (overall effect p = 0.082), with time-dependent hazard ratios (95% confidence interval) of 0.47 (0.17-1.31) at day 2, 0.95 (0.63-1.42) at day 7, 1.48 (1.01-2.16) at day 14 and 1.94 (1.09-3.46) at day 21. CONCLUSIONS: No significant association was found between adjuvant corticosteroid treatment and the incidence of VAP, although a time-varying effect of corticosteroids was identified along the 28-day follow-up.


Subject(s)
COVID-19 , Pneumonia, Ventilator-Associated , Adult , COVID-19/complications , COVID-19/epidemiology , Humans , Incidence , Intensive Care Units , Pneumonia, Ventilator-Associated/drug therapy , Pneumonia, Ventilator-Associated/epidemiology , Pneumonia, Ventilator-Associated/etiology , Respiration, Artificial/adverse effects , Retrospective Studies , SARS-CoV-2
2.
Crit Care ; 26(1): 11, 2022 01 04.
Article in English | MEDLINE | ID: mdl-34983611

ABSTRACT

BACKGROUND: Recent multicenter studies identified COVID-19 as a risk factor for invasive pulmonary aspergillosis (IPA). However, no large multicenter study has compared the incidence of IPA between COVID-19 and influenza patients. OBJECTIVES: To determine the incidence of putative IPA in critically ill SARS-CoV-2 patients, compared with influenza patients. METHODS: This study was a planned ancillary analysis of the coVAPid multicenter retrospective European cohort. Consecutive adult patients requiring invasive mechanical ventilation for > 48 h for SARS-CoV-2 pneumonia or influenza pneumonia were included. The 28-day cumulative incidence of putative IPA, based on Blot definition, was the primary outcome. IPA incidence was estimated using the Kalbfleisch and Prentice method, considering extubation (dead or alive) within 28 days as competing event. RESULTS: A total of 1047 patients were included (566 in the SARS-CoV-2 group and 481 in the influenza group). The incidence of putative IPA was lower in SARS-CoV-2 pneumonia group (14, 2.5%) than in influenza pneumonia group (29, 6%), adjusted cause-specific hazard ratio (cHR) 3.29 (95% CI 1.53-7.02, p = 0.0006). When putative IPA and Aspergillus respiratory tract colonization were combined, the incidence was also significantly lower in the SARS-CoV-2 group, as compared to influenza group (4.1% vs. 10.2%), adjusted cHR 3.21 (95% CI 1.88-5.46, p < 0.0001). In the whole study population, putative IPA was associated with significant increase in 28-day mortality rate, and length of ICU stay, compared with colonized patients, or those with no IPA or Aspergillus colonization. CONCLUSIONS: Overall, the incidence of putative IPA was low. Its incidence was significantly lower in patients with SARS-CoV-2 pneumonia than in those with influenza pneumonia. Clinical trial registration The study was registered at ClinicalTrials.gov, number NCT04359693 .


Subject(s)
COVID-19 , Influenza, Human , Intubation , Invasive Pulmonary Aspergillosis , Adult , COVID-19/epidemiology , COVID-19/therapy , Europe/epidemiology , Humans , Incidence , Influenza, Human/epidemiology , Influenza, Human/therapy , Invasive Pulmonary Aspergillosis/epidemiology , Retrospective Studies , SARS-CoV-2
5.
Crit Care ; 25(1): 177, 2021 05 25.
Article in English | MEDLINE | ID: mdl-34034777

ABSTRACT

BACKGROUND: Patients with SARS-CoV-2 infection are at higher risk for ventilator-associated pneumonia (VAP). No study has evaluated the relationship between VAP and mortality in this population, or compared this relationship between SARS-CoV-2 patients and other populations. The main objective of our study was to determine the relationship between VAP and mortality in SARS-CoV-2 patients. METHODS: Planned ancillary analysis of a multicenter retrospective European cohort. VAP was diagnosed using clinical, radiological and quantitative microbiological criteria. Univariable and multivariable marginal Cox's regression models, with cause-specific hazard for duration of mechanical ventilation and ICU stay, were used to compare outcomes between study groups. Extubation, and ICU discharge alive were considered as events of interest, and mortality as competing event. FINDINGS: Of 1576 included patients, 568 were SARS-CoV-2 pneumonia, 482 influenza pneumonia, and 526 no evidence of viral infection at ICU admission. VAP was associated with significantly higher risk for 28-day mortality in SARS-CoV-2 (adjusted HR 1.70 (95% CI 1.16-2.47), p = 0.006), and influenza groups (1.75 (1.03-3.02), p = 0.045), but not in the no viral infection group (1.07 (0.64-1.78), p = 0.79). VAP was associated with significantly longer duration of mechanical ventilation in the SARS-CoV-2 group, but not in the influenza or no viral infection groups. VAP was associated with significantly longer duration of ICU stay in the 3 study groups. No significant difference was found in heterogeneity of outcomes related to VAP between the 3 groups, suggesting that the impact of VAP on mortality was not different between study groups. INTERPRETATION: VAP was associated with significantly increased 28-day mortality rate in SARS-CoV-2 patients. However, SARS-CoV-2 pneumonia, as compared to influenza pneumonia or no viral infection, did not significantly modify the relationship between VAP and 28-day mortality. CLINICAL TRIAL REGISTRATION: The study was registered at ClinicalTrials.gov, number NCT04359693.


Subject(s)
COVID-19/mortality , COVID-19/therapy , Pneumonia, Ventilator-Associated/epidemiology , Aged , Europe/epidemiology , Female , Hospital Mortality , Humans , Intensive Care Units , Length of Stay/statistics & numerical data , Male , Middle Aged , Respiration, Artificial/statistics & numerical data , Retrospective Studies
6.
Am J Respir Crit Care Med ; 204(5): 546-556, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34038699

ABSTRACT

Rationale: Early empirical antimicrobial treatment is frequently prescribed to critically ill patients with coronavirus disease (COVID-19) based on Surviving Sepsis Campaign guidelines.Objectives: We aimed to determine the prevalence of early bacterial identification in intubated patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia, as compared with influenza pneumonia, and to characterize its microbiology and impact on outcomes.Methods: A multicenter retrospective European cohort was performed in 36 ICUs. All adult patients receiving invasive mechanical ventilation >48 hours were eligible if they had SARS-CoV-2 or influenza pneumonia at ICU admission. Bacterial identification was defined by a positive bacterial culture within 48 hours after intubation in endotracheal aspirates, BAL, blood cultures, or a positive pneumococcal or legionella urinary antigen test.Measurements and Main Results: A total of 1,050 patients were included (568 in SARS-CoV-2 and 482 in influenza groups). The prevalence of bacterial identification was significantly lower in patients with SARS-CoV-2 pneumonia compared with patients with influenza pneumonia (9.7 vs. 33.6%; unadjusted odds ratio, 0.21; 95% confidence interval [CI], 0.15-0.30; adjusted odds ratio, 0.23; 95% CI, 0.16-0.33; P < 0.0001). Gram-positive cocci were responsible for 58% and 72% of coinfection in patients with SARS-CoV-2 and influenza pneumonia, respectively. Bacterial identification was associated with increased adjusted hazard ratio for 28-day mortality in patients with SARS-CoV-2 pneumonia (1.57; 95% CI, 1.01-2.44; P = 0.043). However, no significant difference was found in the heterogeneity of outcomes related to bacterial identification between the two study groups, suggesting that the impact of coinfection on mortality was not different between patients with SARS-CoV-2 and influenza.Conclusions: Bacterial identification within 48 hours after intubation is significantly less frequent in patients with SARS-CoV-2 pneumonia than patients with influenza pneumonia.Clinical trial registered with www.clinicaltrials.gov (NCT04359693).


Subject(s)
COVID-19 , Coinfection , Influenza, Human , Adult , COVID-19/complications , Humans , Influenza, Human/complications , Influenza, Human/epidemiology , Retrospective Studies , SARS-CoV-2
7.
Chest ; 159(6): 2309-2317, 2021 06.
Article in English | MEDLINE | ID: mdl-33561455

ABSTRACT

BACKGROUND: Patients with obesity are at higher risk for community-acquired and nosocomial infections. However, no study has specifically evaluated the relationship between obesity and ventilator-associated pneumonia (VAP). RESEARCH QUESTION: Is obesity associated with an increased incidence of VAP? STUDY DESIGN AND METHODS: This study was a post hoc analysis of the Impact of Early Enteral vs Parenteral Nutrition on Mortality in Patients Requiring Mechanical Ventilation and Catecholamines (NUTRIREA2) open-label, randomized controlled trial performed in 44 French ICUs. Adults receiving invasive mechanical ventilation and vasopressor support for shock and parenteral nutrition or enteral nutrition were included. Obesity was defined as BMI ≥ 30 kg/m2 at ICU admission. VAP diagnosis was adjudicated by an independent blinded committee, based on all available clinical, radiologic, and microbiologic data. Only first VAP episodes were taken into account. Incidence of VAP was analyzed by using the Fine and Gray model, with extubation and death as competing risks. RESULTS: A total of 699 (30%) of the 2,325 included patients had obesity; 224 first VAP episodes were diagnosed (60 and 164 in obese and nonobese groups, respectively). The incidence of VAP at day 28 was 8.6% vs 10.1% in the two groups (hazard ratio, 0.85; 95% CI 0.63-1.14; P = .26). After adjustment on sex, McCabe score, age, antiulcer treatment, and Sequential Organ Failure Assessment at randomization, the incidence of VAP remained nonsignificant between obese and nonobese patients (hazard ratio, 0.893; 95% CI, 0.66-1.2; P = .46). Although no significant difference was found in duration of mechanical ventilation and ICU length of stay, 90-day mortality was significantly lower in obese than in nonobese patients (272 of 692 [39.3%] patients vs 718 of 1,605 [44.7%]; P = .02). In a subgroup of patients (n = 123) with available pepsin and alpha-amylase measurements, no significant difference was found in rate of abundant microaspiration of gastric contents, or oropharyngeal secretions between obese and nonobese patients. INTERPRETATION: Our results suggest that obesity has no significant impact on the incidence of VAP.


Subject(s)
Body Mass Index , Intensive Care Units , Obesity/complications , Pneumonia, Ventilator-Associated/etiology , Respiration, Artificial/adverse effects , Shock/therapy , Aged , Female , France/epidemiology , Humans , Incidence , Male , Middle Aged , Parenteral Nutrition, Total/methods , Pneumonia, Ventilator-Associated/epidemiology , Prevalence , Prognosis , Risk Factors , Survival Rate/trends
8.
PLoS One ; 16(1): e0245552, 2021.
Article in English | MEDLINE | ID: mdl-33444395

ABSTRACT

BACKGROUND: Early distinguishing ventilator-associated tracheobronchitis (VAT) and ventilator-associated pneumonia (VAP) remains difficult in the daily practice. However, this question appears clinically relevant, as treatments of VAT and VAP currently differ. In this study, we assessed the accuracy of sepsis criteria according to the Sepsis-3 definition in the early distinction between VAT and VAP. METHODS: Retrospective single-center cohort, including all consecutive patients with a diagnosis of VAT (n = 70) or VAP (n = 136), during a 2-year period. Accuracy of sepsis criteria according to Sepsis-3, total SOFA and respiratory SOFA, calculated at time of microbiological sampling were assessed in differentiating VAT from VAP, and in predicting mortality on ICU discharge. RESULTS: Sensitivity and specificity of sepsis criteria were found respectively at 0.4 and 0.91 to distinguish VAT from VAP, and at 0.38 and 0.75 for the prediction of mortality in VA-LRTI. A total SOFA ≥ 6 and a respiratory SOFA ≥ 3 were identified as the best cut-offs for these criteria in differentiating VAT from VAP, with sensitivity and specificity respectively found at 0.63 and 0.69 for total SOFA, and at 0.49 and 0.7 for respiratory SOFA. Additionally, for prediction of mortality, a total SOFA ≥ 7 and a respiratory SOFA = 4 were identified as the best-cut-offs, respectively yielding sensitivity and specificity at 0.56 and 0.61 for total SOFA, and at 0.22 and 0.95 for respiratory SOFA. CONCLUSIONS: Sepsis criteria according to the Sepsis-3 definition show a high specificity but a low sensitivity for the diagnosis of VAP. Our results do not support the use of these criteria for the early diagnosis of VAP in patients with VA-LRTI.


Subject(s)
Pneumonia, Ventilator-Associated/diagnosis , Pneumonia, Ventilator-Associated/mortality , Sepsis/diagnosis , Tracheitis/diagnosis , Tracheitis/mortality , Diagnosis, Differential , Female , Humans , Male , Middle Aged , Prognosis , Retrospective Studies , Tracheitis/etiology
9.
Intensive Care Med ; 47(2): 188-198, 2021 02.
Article in English | MEDLINE | ID: mdl-33388794

ABSTRACT

PURPOSE: Although patients with SARS-CoV-2 infection have several risk factors for ventilator-associated lower respiratory tract infections (VA-LRTI), the reported incidence of hospital-acquired infections is low. We aimed to determine the relationship between SARS-CoV-2 pneumonia, as compared to influenza pneumonia or no viral infection, and the incidence of VA-LRTI. METHODS: Multicenter retrospective European cohort performed in 36 ICUs. All adult patients receiving invasive mechanical ventilation > 48 h were eligible if they had: SARS-CoV-2 pneumonia, influenza pneumonia, or no viral infection at ICU admission. VA-LRTI, including ventilator-associated tracheobronchitis (VAT) and ventilator-associated pneumonia (VAP), were diagnosed using clinical, radiological and quantitative microbiological criteria. All VA-LRTI were prospectively identified, and chest-X rays were analyzed by at least two physicians. Cumulative incidence of first episodes of VA-LRTI was estimated using the Kalbfleisch and Prentice method, and compared using Fine-and Gray models. RESULTS: 1576 patients were included (568 in SARS-CoV-2, 482 in influenza, and 526 in no viral infection groups). VA-LRTI incidence was significantly higher in SARS-CoV-2 patients (287, 50.5%), as compared to influenza patients (146, 30.3%, adjusted sub hazard ratio (sHR) 1.60 (95% confidence interval (CI) 1.26 to 2.04)) or patients with no viral infection (133, 25.3%, adjusted sHR 1.7 (95% CI 1.2 to 2.39)). Gram-negative bacilli were responsible for a large proportion (82% to 89.7%) of VA-LRTI, mainly Pseudomonas aeruginosa, Enterobacter spp., and Klebsiella spp. CONCLUSIONS: The incidence of VA-LRTI is significantly higher in patients with SARS-CoV-2 infection, as compared to patients with influenza pneumonia, or no viral infection after statistical adjustment, but residual confounding may still play a role in the effect estimates.


Subject(s)
COVID-19 , Pneumonia, Ventilator-Associated , Respiratory Tract Infections , Aged , COVID-19/epidemiology , Europe , Female , Humans , Incidence , Influenza, Human/epidemiology , Male , Middle Aged , Pneumonia, Ventilator-Associated/epidemiology , Respiratory Tract Infections/epidemiology , Retrospective Studies , Ventilators, Mechanical
10.
Ann Intensive Care ; 10(1): 6, 2020 Jan 13.
Article in English | MEDLINE | ID: mdl-31932982

ABSTRACT

BACKGROUND: The aim of this study was to investigate the concordance between ventilator-associated events (VAE) and ventilator-associated lower respiratory tract infections (VA-LRTI), and their impact on outcome. METHODS: This retrospective study was performed in five 10-bed ICUs of a teaching hospital, during a 2-year period. Ventilator-associated lower respiratory tract infections (VA-LRTI), including ventilator-associated tracheobronchitis (VAT) and ventilator-associated pneumonia (VAP) were prospectively diagnosed. The agreement between VAE, VAT and VAP was assessed by k statistics. RESULTS: A total of 1059 patients (15,029 ventilator-days) were included. 268 VAP (17.8 per 1000 ventilator-days), 127 VAT (8.5 per 1000 ventilator-days) and 262 VAE (17.4 per 1000 ventilator-days) were diagnosed. There was no agreement between VAT and VAE, and the agreement was poor between VAP and VAE (k = 0.12, 95% CI 0.03-0.20). VAE and VA-LRTI were associated with significantly longer duration of mechanical ventilation, ICU and hospital length of stay. VAP, VAT and VAE were not significantly associated with mortality in multivariate analysis. CONCLUSIONS: The agreement was poor between VAE and VAP. No agreement was found between VAE and VAT. VAE episodes were significantly associated with longer duration of mechanical ventilation and length of stay, but not with ICU mortality.

11.
Ann Transl Med ; 6(21): 417, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30581825

ABSTRACT

BACKGROUND: The objective of this study was to assess the impact of hyperoxemia on mortality in critically ill patients with ventilator-associated pneumonia (VAP). METHODS: This observational study was performed in a 50-bed mixed intensive care unit (ICU) during a 1-year period. Quantitative microbiological confirmation was required for VAP diagnosis. Hyperoxemia was defined as peripheral capillary oxygen saturation (SpO2) ≥98%. SpO2 was hourly collected in all study patients during the whole period of mechanical ventilation. The primary objective was to assess the influence of hyperoxemia on ICU mortality. RESULTS: Ninety-three patients with VAP were all included in this study. ICU-mortality rate was 32% (30 of 93 patients). The mean percentage of time spent with hyperoxemia in survivors and nonsurvivors at ICU admission, before, after or at the time of VAP diagnosis was not significantly different. Multivariate analysis identified age, and sequential organ dysfunction assessment at the day of VAP occurrence as independent risk factors for ICU mortality [odds ratio (OR) =1.04 (95% CI, 1.01-1.08) per year, P=0.019; 1.19 (95% CI, 1.06-1.34) per point, P=0.003; respectively]. The time spent with hyperoxemia before VAP occurrence was not significantly associated with mechanical ventilation free days, or ICU length of stay. CONCLUSIONS: Hyperoxemia at ICU admission, or during ICU stay, had no significant impact on ICU mortality in critically ill patients with VAP.

SELECTION OF CITATIONS
SEARCH DETAIL
...