Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 12: 805133, 2021.
Article in English | MEDLINE | ID: mdl-35095511

ABSTRACT

Coumadin (R/S-warfarin) anticoagulant therapy is highly efficacious in preventing the formation of blood clots; however, significant inter-individual variations in response risks over or under dosing resulting in adverse bleeding events or ineffective therapy, respectively. Levels of pharmacologically active forms of the drug and metabolites depend on a diversity of metabolic pathways. Cytochromes P450 play a major role in oxidizing R- and S-warfarin to 6-, 7-, 8-, 10-, and 4'-hydroxywarfarin, and warfarin alcohols form through a minor metabolic pathway involving reduction at the C11 position. We hypothesized that due to structural similarities with warfarin, hydroxywarfarins undergo reduction, possibly impacting their pharmacological activity and elimination. We modeled reduction reactions and carried out experimental steady-state reactions with human liver cytosol for conversion of rac-6-, 7-, 8-, 4'-hydroxywarfarin and 10-hydroxywarfarin isomers to the corresponding alcohols. The modeling correctly predicted the more efficient reduction of 10-hydroxywarfarin over warfarin but not the order of the remaining hydroxywarfarins. Experimental studies did not indicate any clear trends in the reduction for rac-hydroxywarfarins or 10-hydroxywarfarin into alcohol 1 and 2. The collective findings indicated the location of the hydroxyl group significantly impacted reduction selectivity among the hydroxywarfarins, as well as the specificity for the resulting metabolites. Based on studies with R- and S-7-hydroxywarfarin, we predicted that all hydroxywarfarin reductions are enantioselective toward R substrates and enantiospecific for S alcohol metabolites. CBR1 and to a lesser extent AKR1C3 reductases are responsible for those reactions. Due to the inefficiency of reactions, only reduction of 10-hydroxywarfarin is likely to be important in clearance of the metabolite. This pathway for 10-hydroxywarfarin may have clinical relevance as well given its anticoagulant activity and capacity to inhibit S-warfarin metabolism.

2.
Molecules ; 25(20)2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33092129

ABSTRACT

In 2020, nearly one-third of new drugs on the global market were synthetic cannabinoids including the drug of abuse N-(1-adamantyl)-1-(5-pentyl)-1H-indazole-3-carboxamide (5F-APINACA, 5F-AKB48). Knowledge of 5F-APINACA metabolism provides a critical mechanistic basis to interpret and predict abuser outcomes. Prior qualitative studies identified which metabolic processes occur but not the order and extent of them and often relied on problematic "semi-quantitative" mass spectroscopic (MS) approaches. We capitalized on 5F-APINACA absorbance for quantitation while leveraging MS to characterize metabolite structures for measuring 5F-APINACA steady-state kinetics. We demonstrated the reliability of absorbance and not MS for inferring metabolite levels. Human liver microsomal reactions yielded eight metabolites by MS but only five by absorbance. Subsequent kinetic studies on primary and secondary metabolites revealed highly efficient mono- and dihydroxylation of the adamantyl group and much less efficient oxidative defluorination at the N-pentyl terminus. Based on regiospecificity and kinetics, we constructed pathways for competing and intersecting steps in 5F-APINACA metabolism. Overall efficiency for adamantyl oxidation was 17-fold higher than that for oxidative defluorination, showing significant bias in metabolic flux and subsequent metabolite profile compositions. Lastly, our analytical approach provides a powerful new strategy to more accurately assess metabolic kinetics for other understudied synthetic cannabinoids possessing the indazole chromophore.


Subject(s)
Adamantane/analogs & derivatives , Cannabinoids/chemistry , Indazoles/chemistry , Metabolic Networks and Pathways/drug effects , Adamantane/chemical synthesis , Adamantane/chemistry , Adamantane/pharmacology , Cannabinoids/chemical synthesis , Humans , Indazoles/chemical synthesis , Indazoles/pharmacology , Kinetics , Microsomes, Liver/drug effects
3.
Blood Coagul Fibrinolysis ; 29(7): 602-612, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30334816

ABSTRACT

: For this pilot study, we leveraged metabolite patterns for warfarin patients to more accurately assess clinically relevant differences in drug metabolism. We tested our hypothesis that plasma metabolite levels correlate with the influence of clinical factors on R-warfarin and S-warfarin metabolism (warfarin metabolic phenotype). We recruited 29 patients receiving a maintenance dose and testing within targeted therapeutic range. We determined their CYP2C9 and vitamin K epoxide reductase genotype and profiled 14 isomeric forms of warfarin and its metabolites. We employed three novel types of clearance ratios using analyte levels to perform multiple-linear regression analyses with clinical factors impacting drug metabolism and dose-responses. Competitive clearance ratios correlated with seven clinical factors including lifestyle choices (smoking), genetics (CYP2C9 and vitamin K epoxide reductase 1), and drug interactions (omeprazole) along with age, weight, and malignancy. Significant competitive clearance ratio correlations (P = 0.04 to < 0.001) explained 21-95% variability. Their performances surpassed that of oxidative and metabolic clearance ratios based on the number and significance of correlations. Competitive clearance ratios may accurately assess significance of factors on maintaining levels of pharmacologically active forms of the drug and metabolites related to dose-responses and thus provide a strategy to minimize adverse events and improve safety during anticoagulant therapy. This unique capacity could provide a strategy in a future, higher power study with a larger cohort of patients to more accurately assess the significance of clinical factors on active drug levels contributing to warfarin dose-responses.


Subject(s)
Anticoagulants/metabolism , Warfarin/metabolism , Aged , Cohort Studies , Female , Humans , Male , Phenotype , Pilot Projects
4.
AIDS ; 32(1): 1-10, 2018 Jan 02.
Article in English | MEDLINE | ID: mdl-29112072

ABSTRACT

OBJECTIVE: Although bone marrow, liver, thymus (BLT)-humanized mice provide a robust model for HIV-1 infection and enable evaluation of cure strategies dependent on endogenous immune responses, most mice develop graft versus host disease (GVHD), limiting their utility for extended HIV cure studies. This study aimed to: evaluate the GVHD-resistant C57 black 6 (C57BL/6) recombination activating gene 2 (Rag2)γcCD47 triple knockout (TKO)-BLT mouse as a model to establish HIV-1 latency. Determine whether TKO-BLT mice could be maintained on antiretroviral therapy (ART) for extended periods of time. Assess the rapidity of viral rebound following therapy interruption. DESIGN: TKO-BLT mice were HIV-1 infected, treated with various ART regimens over extended periods of time and assayed for viral rebound following therapy interruption. METHODS: Daily subcutaneous injection and oral ART-mediated suppression of HIV-1 infection was tested at various doses in TKO-BLT mice. Mice were monitored for suppression of viremia and cellular HIV-1 RNA and DNA prior to and following therapy interruption. RESULTS: Mice remained healthy for 45 weeks posthumanization and could be treated with ART for up to 18 weeks. Viremia was suppressed to less than 200 copies/ml in the majority of mice with significant reductions in cellular HIV-1 RNA and DNA. Treatment interruption resulted in rapid viral recrudescence. CONCLUSION: HIV-1 latency can be maintained in TKO-BLT mice over extended periods on ART and rapid viral rebound occurs following therapy removal. The additional 15-18 weeks of healthy longevity compared with other BLT models provides sufficient time to examine the decay kinetics of the latent reservoir as well as observe delays in recrudescence in HIV-1 cure studies.


Subject(s)
Disease Models, Animal , HIV Infections/drug therapy , Mice, Transgenic , Administration, Oral , Animals , Anti-Retroviral Agents/administration & dosage , HIV-1/isolation & purification , HIV-1/physiology , Humans , Injections, Subcutaneous , Mice, Inbred C57BL , Mice, Knockout , Treatment Outcome , Viral Load , Virus Latency
5.
Drug Metab Dispos ; 45(9): 1000-1007, 2017 09.
Article in English | MEDLINE | ID: mdl-28646078

ABSTRACT

Coumadin (rac-warfarin) is the most commonly used anticoagulant in the world; however, its clinical use is often challenging because of its narrow therapeutic range and interindividual variations in response. A critical contributor to the uncertainty is variability in warfarin metabolism, which includes mostly oxidative but also reductive pathways. Reduction of each warfarin enantiomer yields two warfarin alcohol isomers, and the corresponding four alcohols retain varying levels of anticoagulant activity. Studies on the kinetics of warfarin reduction have often lacked resolution of parent-drug enantiomers and have suffered from coelution of pairs of alcohol metabolites; thus, those studies have not established the importance of individual stereospecific reductive pathways. We report the first steady-state analysis of R- and S-warfarin reduction in vitro by pooled human liver cytosol. As determined by authentic standards, the major metabolites were 9R,11S-warfarin alcohol for R-warfarin and 9S,11S-warfarin alcohol for S-warfarin. R-warfarin (Vmax 150 pmol/mg per minute, Km 0.67 mM) was reduced more efficiently than S-warfarin (Vmax 27 pmol/mg per minute, Km 1.7 mM). Based on inhibitor phenotyping, carbonyl reductase-1 dominated R-and S-warfarin reduction, followed by aldo-keto reductase-1C3 and then other members of that family. Overall, the carbonyl at position 11 undergoes stereospecific reduction by multiple enzymes to form the S alcohol for both drug enantiomers, yet R-warfarin undergoes reduction preferentially. This knowledge will aid in assessing the relative importance of reductive pathways for R- and S-warfarin and factors influencing levels of pharmacologically active parent drugs and metabolites, thus impacting patient dose responses.


Subject(s)
Liver/metabolism , Oxidoreductases/metabolism , Warfarin/metabolism , Anticoagulants/metabolism , Chromatography, High Pressure Liquid , Cytosol/enzymology , Cytosol/metabolism , Humans , Kinetics , Liver/enzymology , Stereoisomerism , Structure-Activity Relationship , Warfarin/chemistry
6.
Infect Immun ; 85(1)2017 Jan.
Article in English | MEDLINE | ID: mdl-27799333

ABSTRACT

Not all women infected with chlamydiae develop upper genital tract disease, but the reason(s) for this remains undefined. Host genetics and hormonal changes associated with the menstrual cycle are possible explanations for variable infection outcomes. It is also possible that disease severity depends on the virulence of the chlamydial inoculum. It is likely that the inoculum contains multiple genetic variants, differing in virulence. If the virulent variants dominate, then the individual is more likely to develop severe disease. Based on our previous studies, we hypothesized that the relative degree of virulence of a chlamydial population dictates the microRNA (miRNA) expression profile of the host, which, in turn, through regulation of the host inflammatory response, determines disease severity. Thus, we infected C57BL/6 mice with two populations of Chlamydia muridarum, each comprised of multiple genetic variants and differing in virulence: an attenuated strain (NiggA) and a virulent strain (NiggV). NiggA and NiggV elicited upper tract pathology in 54% and 91% of mice, respectively. miRNA expression analysis in NiggV-infected mice showed significant downregulation of miRNAs involved in dampening fibrosis (miR-200b, miR-200b-5p, and 200b-3p miR-200a-3p) and in transcriptional regulation of cytokine responses (miR-148a-3p, miR-152-3p, miR-132, and miR-212) and upregulation of profibrotic miRNAs (miR-142, and miR-147). Downregulated miRNAs were associated with increased expression of interleukin 8 (IL-8), CXCL2, IL-1ß, tumor necrosis factor alpha (TNF-α), and IL-6. Infection with NiggV but not NiggA led to decreased expression of Dicer and Ago 2, suggesting that NiggV interaction with host cells inhibits expression of the miRNA biogenesis machinery, leading to increased cytokine expression and pathology.


Subject(s)
Chlamydia Infections/genetics , Chlamydia Infections/microbiology , Chlamydia muridarum/pathogenicity , MicroRNAs/genetics , Virulence/genetics , Animals , Cell Line, Tumor , Cytokines/genetics , Down-Regulation/genetics , Gene Expression Profiling/methods , Gene Expression Regulation/genetics , Genetic Variation/genetics , HeLa Cells , Humans , Mice , Mice, Inbred C57BL , Transcription, Genetic/genetics , Transcriptional Activation/genetics , Up-Regulation/genetics
7.
Chem Res Toxicol ; 29(1): 101-8, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26651356

ABSTRACT

Overexpression of the translesion synthesis polymerase hpol κ in glioblastomas has been linked to poor patient prognosis; however, the mechanism promoting higher expression in these tumors remains unknown. We determined that activation of the aryl hydrocarbon receptor (AhR) pathway in glioblastoma cells leads to increased hpol κ mRNA and protein levels. We blocked nuclear translocation and DNA binding by AhR in glioblastoma cells using a small-molecule and observed decreased hpol κ expression. Pharmacological inhibition of tryptophan-2,3-dioxygenase (TDO), the enzyme largely responsible for activating AhR in glioblastoma, led to a decrease in the endogenous AhR agonist kynurenine and a corresponding decrease in hpol κ protein levels. Importantly, we discovered that inhibiting TDO activity, AhR signaling, or suppressing hpol κ expression with RNA interference led to decreased chromosomal damage in glioblastoma cells. Epistasis assays further supported the idea that TDO activity, activation of AhR signaling, and the resulting overexpression of hpol κ function primarily in the same pathway to increase endogenous DNA damage. These findings indicate that upregulation of hpol κ through glioblastoma-specific TDO activity and activation of AhR signaling likely contributes to the high levels of replication stress and genomic instability observed in these tumors.


Subject(s)
DNA-Directed DNA Polymerase/biosynthesis , Genomic Instability/genetics , Glioblastoma/metabolism , Glioblastoma/pathology , Kynurenine/metabolism , Promoter Regions, Genetic/genetics , Signal Transduction , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Glioblastoma/genetics , Humans , Indoles/chemistry , Indoles/pharmacology , Molecular Structure , Structure-Activity Relationship , Tumor Cells, Cultured
8.
Arch Biochem Biophys ; 564: 244-53, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25447818

ABSTRACT

The widely used anticoagulant Coumadin (R/S-warfarin) undergoes oxidation by cytochromes P450 into hydroxywarfarins that subsequently become conjugated for excretion in urine. Hydroxywarfarins may modulate warfarin metabolism transcriptionally or through direct inhibition of cytochromes P450 and thus, UGT action toward hydroxywarfarin elimination may impact levels of the parent drugs and patient responses. Nevertheless, relatively little is known about conjugation by UDP-glucuronosyltransferases in warfarin metabolism. Herein, we identified probable conjugation sites, kinetic mechanisms and hepatic UGT isoforms involved in microsomal glucuronidation of R- and S-7-hydroxywarfarin. Both compounds underwent glucuronidation at C4 and C7 hydroxyl groups based on elution properties and spectral characteristics. Their formation demonstrated regio- and enantioselectivity by UGTs and resulted in either Michaelis-Menten or substrate inhibition kinetics. Glucuronidation at the C7 hydroxyl group occurred more readily than at the C4 group, and the reaction was overall more efficient for R-7-hydroxywarfarin due to higher affinity and rates of turnover. The use of these mechanisms and parameters to model in vivo clearance demonstrated that contributions of substrate inhibition would lead to underestimation of metabolic clearance than that predicted by Michaelis-Menten kinetics. Lastly, these processes were driven by multiple UGTs indicating redundancy in glucuronidation pathways and ultimately metabolic clearance of R- and S-7-hydroxywarfarin.


Subject(s)
Anticoagulants , Glucuronosyltransferase/metabolism , Microsomes, Liver/enzymology , Warfarin , Anticoagulants/chemistry , Anticoagulants/pharmacokinetics , Anticoagulants/pharmacology , Humans , Kinetics , Warfarin/chemistry , Warfarin/pharmacokinetics , Warfarin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...