Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 155
Filter
1.
JAMA Netw Open ; 7(5): e2411726, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38753328

ABSTRACT

Importance: Disparities in outcomes exist between Black and White patients with acute myeloid leukemia (AML), with Black patients experiencing poorer prognosis compared with their White counterparts. Objective: To assess whether varying intensity of induction therapy to treat pediatric AML is associated with reduced disparities in treatment outcome by race. Design, Setting, and Participants: A comparative effectiveness analysis was conducted of 86 Black and 359 White patients with newly diagnosed AML who were enrolled in the AML02 trial from 2002 to 2008 or the AML08 trial from 2008 to 2017. Statistical analysis was conducted from July 2023 through January 2024. Interventions: Patients in AML02 were randomly assigned to receive standard low-dose cytarabine-based induction therapy or augmented high-dose cytarabine-based induction therapy, whereas patients in AML08 received high-dose cytarabine-based therapy. Main Outcomes and Measures: Cytarabine pharmacogenomic 10-single-nucleotide variant (ACS10) scores were evaluated for association with outcome according to race and treatment arm. Results: This analysis included 86 Black patients (mean [SD] age, 8.8 [6.5] years; 54 boys [62.8%]; mean [SD] leukocyte count, 52 600 [74 000] cells/µL) and 359 White patients (mean [SD] age, 9.1 [6.2] years; 189 boys [52.6%]; mean [SD] leukocyte count, 54 500 [91 800] cells/µL); 70 individuals with other or unknown racial and ethnic backgrounds were not included. Among all patients without core binding factor AML who received standard induction therapy, Black patients had significantly worse outcomes compared with White patients (5-year event-free survival rate, 25% [95% CI, 9%-67%] compared with 56% [95% CI, 46%-70%]; P = .03). By contrast, among all patients who received augmented induction therapy, there were no differences in outcome according to race (5-year event-free survival rate, Black patients, 50% [95% CI, 38%-67%]; White patients, 48% [95% CI, 42%-55%]; P = .78). Among patients who received standard induction therapy, those with low ACS10 scores had a significantly worse 5-year event-free survival rate compared with those with high scores (42.4% [95% CI, 25.6%-59.3%] and 70.0% [95% CI, 56.6%-83.1%]; P = .004); however, among patients who received augmented induction therapy, there were no differences in 5-year event-free survival rates according to ACS10 score (low score, 60.6% [95% CI, 50.9%-70.2%] and high score, 54.8% [95% CI, 47.1%-62.5%]; P = .43). Conclusions and Relevance: In this comparative effectiveness study of pediatric patients with AML treated in 2 consecutive clinical trials, Black patients had worse outcomes compared with White patients after treatment with standard induction therapy, but this disparity was eliminated by treatment with augmented induction therapy. When accounting for ACS10 scores, no outcome disparities were seen between Black and White patients. Our results suggest that using pharmacogenomics parameters to tailor induction regimens for both Black and White patients may narrow the racial disparity gap in patients with AML.


Subject(s)
Cytarabine , Leukemia, Myeloid, Acute , White People , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Male , Child , Female , Cytarabine/therapeutic use , Treatment Outcome , Child, Preschool , White People/statistics & numerical data , White People/genetics , Pharmacogenetics , Adolescent , Antimetabolites, Antineoplastic/therapeutic use , Black or African American/statistics & numerical data , Induction Chemotherapy/methods
2.
Res Sq ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38585847

ABSTRACT

Anaplastic large cell lymphoma (ALCL) is a mature T-cell lymphoma that accounts for for 10-15% of childhood lymphomas. Despite the observation that more than 90% of pediatric cases harbor the anaplastic lymphoma kinase (ALK) rearrangement resulting in aberrant ALK kinase expression, there is significant clinical, morphologic, and biological heterogeneity. To gain insights into the genomic aberrations and molecular heterogeneity within ALK-positive ALCL(ALK+ ALCL), we analyzed 46 pediatric ALK+ ALCLs by whole-exome sequencing, RNA-sequencing, and DNA methylation profiling. Whole-exome sequencing found on average 25 SNV/Indel events per sample with recurring genetic events in regulators of DNA damage (TP53, MDM4), transcription (JUNB), and epigenetic regulators (TET1, KMT2B, KMT2A, KMT2C, KMT2E). Gene expression and methylation profiling consistently subclassified ALK+ ALCLs into two groups characterized by diferential ALK expression levels. The ALK-low group showed enrichment of pathways associated with immune response, cytokine signaling, and a hypermethylated predominant pattern compared to the ALK- high group, which had more frequent copy number changes, and was enriched with pathways associated with cell growth, proliferation, metabolic pathways, and. Taken together, these findings suggest that there is molecular heterogeneity within pediatric ALK+ALCL, predicting distinct biological mechanisms that may provide novel insights into disease pathogenesis and represent prognostic markers.

3.
Genes (Basel) ; 15(3)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38540403

ABSTRACT

The false discovery rate (FDR) is a widely used metric of statistical significance for genomic data analyses that involve multiple hypothesis testing. Power and sample size considerations are important in planning studies that perform these types of genomic data analyses. Here, we propose a three-rectangle approximation of a p-value histogram to derive a formula to compute the statistical power and sample size for analyses that involve the FDR. We also introduce the R package FDRsamplesize2, which incorporates these and other power calculation formulas to compute power for a broad variety of studies not covered by other FDR power calculation software. A few illustrative examples are provided. The FDRsamplesize2 package is available on CRAN.


Subject(s)
Algorithms , Software , Sample Size , Research Design , Genomics
4.
Nat Genet ; 56(2): 281-293, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38212634

ABSTRACT

Recent studies on pediatric acute myeloid leukemia (pAML) have revealed pediatric-specific driver alterations, many of which are underrepresented in the current classification schemas. To comprehensively define the genomic landscape of pAML, we systematically categorized 887 pAML into 23 mutually distinct molecular categories, including new major entities such as UBTF or BCL11B, covering 91.4% of the cohort. These molecular categories were associated with unique expression profiles and mutational patterns. For instance, molecular categories characterized by specific HOXA or HOXB expression signatures showed distinct mutation patterns of RAS pathway genes, FLT3 or WT1, suggesting shared biological mechanisms. We show that molecular categories were strongly associated with clinical outcomes using two independent cohorts, leading to the establishment of a new prognostic framework for pAML based on these updated molecular categories and minimal residual disease. Together, this comprehensive diagnostic and prognostic framework forms the basis for future classification of pAML and treatment strategies.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Child , Leukemia, Myeloid, Acute/genetics , Mutation , Prognosis , Genomics , Transcription Factors/genetics , Repressor Proteins/genetics , Tumor Suppressor Proteins/genetics
5.
Res Sq ; 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37961674

ABSTRACT

Refractoriness to initial chemotherapy and relapse after remission are the main obstacles to cure in T-cell Acute Lymphoblastic Leukemia (T-ALL). Biomarker guided risk stratification and targeted therapy have the potential to improve outcomes in high-risk T-ALL; however, cellular and genetic factors contributing to treatment resistance remain unknown. Previous bulk genomic studies in T-ALL have implicated tumor heterogeneity as an unexplored mechanism for treatment failure. To link tumor subpopulations with clinical outcome, we created an atlas of healthy pediatric hematopoiesis and applied single-cell multiomic (CITE-seq/snATAC-seq) analysis to a cohort of 40 cases of T-ALL treated on the Children's Oncology Group AALL0434 clinical trial. The cohort was carefully selected to capture the immunophenotypic diversity of T-ALL, with early T-cell precursor (ETP) and Near/Non-ETP subtypes represented, as well as enriched with both relapsed and treatment refractory cases. Integrated analyses of T-ALL blasts and normal T-cell precursors identified a bone-marrow progenitor-like (BMP-like) leukemia sub-population associated with treatment failure and poor overall survival. The single-cell-derived molecular signature of BMP-like blasts predicted poor outcome across multiple subtypes of T-ALL within two independent patient cohorts using bulk RNA-sequencing data from over 1300 patients. We defined the mutational landscape of BMP-like T-ALL, finding that NOTCH1 mutations additively drive T-ALL blasts away from the BMP-like state. We transcriptionally matched BMP-like blasts to early thymic seeding progenitors that have low NR3C1 expression and high stem cell gene expression, corresponding to a corticosteroid and conventional cytotoxic resistant phenotype we observed in ex vivo drug screening. To identify novel targets for BMP-like blasts, we performed in silico and in vitro drug screening against the BMP-like signature and prioritized BMP-like overexpressed cell-surface (CD44, ITGA4, LGALS1) and intracellular proteins (BCL-2, MCL-1, BTK, NF-κB) as candidates for precision targeted therapy. We established patient derived xenograft models of BMP-high and BMP-low leukemias, which revealed vulnerability of BMP-like blasts to apoptosis-inducing agents, TEC-kinase inhibitors, and proteasome inhibitors. Our study establishes the first multi-omic signatures for rapid risk-stratification and targeted treatment of high-risk T-ALL.

6.
Res Sq ; 2023 May 29.
Article in English | MEDLINE | ID: mdl-37398194

ABSTRACT

Recent studies on pediatric acute myeloid leukemia (pAML) have revealed pediatric-specific driver alterations, many of which are underrepresented in the current classification schemas. To comprehensively define the genomic landscape of pAML, we systematically categorized 895 pAML into 23 molecular categories that are mutually distinct from one another, including new entities such as UBTF or BCL11B, covering 91.4% of the cohort. These molecular categories were associated with unique expression profiles and mutational patterns. For instance, molecular categories characterized by specific HOXA or HOXB expression signatures showed distinct mutation patterns of RAS pathway genes, FLT3, or WT1, suggesting shared biological mechanisms. We show that molecular categories were strongly associated with clinical outcomes using two independent cohorts, leading to the establishment of a prognostic framework for pAML based on molecular categories and minimal residual disease. Together, this comprehensive diagnostic and prognostic framework forms the basis for future classification of pAML and treatment strategies.

7.
Blood ; 142(8): 711-723, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37216686

ABSTRACT

Intrachromosomal amplification of chromosome 21 defines a subtype of high-risk childhood acute lymphoblastic leukemia (iAMP21-ALL) characterized by copy number changes and complex rearrangements of chromosome 21. The genomic basis of iAMP21-ALL and the pathogenic role of the region of amplification of chromosome 21 to leukemogenesis remains incompletely understood. In this study, using integrated whole genome and transcriptome sequencing of 124 patients with iAMP21-ALL, including rare cases arising in the context of constitutional chromosomal aberrations, we identified subgroups of iAMP21-ALL based on the patterns of copy number alteration and structural variation. This large data set enabled formal delineation of a 7.8 Mb common region of amplification harboring 71 genes, 43 of which were differentially expressed compared with non-iAMP21-ALL ones, including multiple genes implicated in the pathogenesis of acute leukemia (CHAF1B, DYRK1A, ERG, HMGN1, and RUNX1). Using multimodal single-cell genomic profiling, including single-cell whole genome sequencing of 2 cases, we documented clonal heterogeneity and genomic evolution, demonstrating that the acquisition of the iAMP21 chromosome is an early event that may undergo progressive amplification during disease ontogeny. We show that UV-mutational signatures and high mutation load are characteristic secondary genetic features. Although the genomic alterations of chromosome 21 are variable, these integrated genomic analyses and demonstration of an extended common minimal region of amplification broaden the definition of iAMP21-ALL for more precise diagnosis using cytogenetic or genomic methods to inform clinical management.


Subject(s)
Chromosomes, Human, Pair 21 , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Child , Chromosomes, Human, Pair 21/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Chromosome Aberrations , Cytogenetics , Genomics , Chromatin Assembly Factor-1/genetics
8.
Blood Adv ; 7(14): 3651-3657, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37058475

ABSTRACT

The prognostic significance of bone marrow minimal residual disease (MRD) in pediatric patients with acute myeloid leukemia (AML) is well characterized, but the impact of blood MRD is not known. We, therefore, used flow cytometric assessment of leukemia-specific immunophenotypes to measure levels of MRD in both the blood and bone marrow of patients treated in the AML08 (NCT00703820) clinical trial. Blood samples were obtained on days 8 and 22 of therapy, whereas bone marrow samples were obtained on day 22. Among patients who tested as having MRD-negative bone marrow on day 22, neither day-8 nor day-22 blood MRD was significantly associated with the outcome. However, day-8 blood MRD was highly predictive of the outcome among patients who tested as having MRD-positive bone marrow on day 22. Although the measurement of blood MRD on day 8 cannot be used to identify patients who have day-22 MRD-negative bone marrow who are likely to relapse, our findings suggest that day-8 blood MRD results can identify patients with MRD-positive bone marrow who have a dismal prognosis and may be candidates for the early use of experimental therapy.


Subject(s)
Bone Marrow , Leukemia, Myeloid, Acute , Child , Humans , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/drug therapy , Neoplasm, Residual , Prognosis , Recurrence
9.
Cancer ; 129(12): 1873-1884, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36943896

ABSTRACT

BACKGROUND: Hyperleukocytosis in patients with acute myeloid leukemia (AML) has been associated with worse outcomes. For cytoreduction, leukapheresis has been used but its clinical utility is unknown, and low-dose cytarabine (LD-cytarabine) is used as an alternative method. METHODS: Children with newly diagnosed AML treated between 1997 and 2017 in institutional protocols were studied. Hyperleukocytosis was defined as a leukocyte count of ≥100 × 109 /L at diagnosis. Clinical characteristics, early complications, survival data, and effects of cytoreductive methods were reviewed. Among 324 children with newly diagnosed AML, 49 (15.1%) presented with hyperleukocytosis. Initial management of hyperleukocytosis included leukapheresis or exchange transfusion (n = 16, considered as one group), LD-cytarabine (n = 18), hydroxyurea (n = 1), and no leukoreduction (n = 14). RESULTS: Compared with patients who received leukapheresis, the percentage decrease in leukocyte counts following intervention was greater among those who received LD-cytarabine (48% vs. 75%; p = .02), with longer median time from diagnosis to initiation of protocol therapy (28.1 vs. 95.2 hours; p < .001). The incidence of infection was higher in patients (38%) who had leukapheresis than those who receive LD-cytarabine (0%) or leukoreduction with protocol therapy (14%) (p = .008). No differences were noted in the outcomes among the intervention groups. Although patients with hyperleukocytosis had higher incidences of pulmonary and metabolic complications than did those without, no early deaths occurred, and the complete remission, event-free survival, overall survival rates, and outcomes of both groups were similar. CONCLUSION: LD-cytarabine treatment appears to be a safe and effective means of cytoreduction for children with AML and hyperleukocytosis.


Subject(s)
Cytoreduction Surgical Procedures , Leukemia, Myeloid, Acute , Humans , Child , Cytoreduction Surgical Procedures/adverse effects , Leukocytosis/therapy , Leukocytosis/epidemiology , Leukocytosis/etiology , Leukemia, Myeloid, Acute/complications , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/diagnosis , Leukocyte Count , Leukapheresis/methods , Cytarabine
10.
Methods Mol Biol ; 2629: 349-373, 2023.
Article in English | MEDLINE | ID: mdl-36929085

ABSTRACT

Pediatric cancer multi-omics is a uniquely rewarding and challenging domain of biomedical research. Public generosity bestows an abundance of resources for the study of extremely rare diseases; this unique dynamic creates a research environment in which problems with high-dimension and low sample size are commonplace. Here, we present a few statistical methods that we have developed for our research setting and believe will prove valuable in other biomedical research settings as well. The genomic random interval (GRIN) method evaluates the loci and frequency of genomic abnormalities in the DNA of tumors to identify genes that may drive the development of malignancies. The association of lesions with expression (ALEX) method evaluates the impact of genomic abnormalities on the RNA transcription of nearby genes to inform the formulation of biological hypotheses on molecular mechanisms. The projection onto the most interesting statistical evidence (PROMISE) method identifies omic features that consistently associate with better prognosis or consistently associate with worse prognosis across multiple measures of clinical outcome. We have shown that these methods are statistically robust and powerful in the statistical bioinformatic literature and successfully used these methods to make fundamental biological discoveries that have formed the scientific rationale for ongoing clinical trials. We describe these methods and illustrate their application on a publicly available T-cell acute lymphoblastic leukemia (T-ALL) data set. A companion github site ( https://github.com/stjude/TALL-example ) provides the R code and data necessary to recapitulate the example data analyses of this chapter.


Subject(s)
Multiomics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Child , Humans , Genomics/methods , Computational Biology , Genome
11.
bioRxiv ; 2023 Mar 26.
Article in English | MEDLINE | ID: mdl-36993205

ABSTRACT

Prior studies have identified genetic, infectious, and biological associations with immune competence and disease severity; however, there have been few integrative analyses of these factors and study populations are often limited in demographic diversity. Utilizing samples from 1,705 individuals in 5 countries, we examined putative determinants of immunity, including: single nucleotide polymorphisms, ancestry informative markers, herpesvirus status, age, and sex. In healthy subjects, we found significant differences in cytokine levels, leukocyte phenotypes, and gene expression. Transcriptional responses also varied by cohort, and the most significant determinant was ancestry. In influenza infected subjects, we found two disease severity immunophenotypes, largely driven by age. Additionally, cytokine regression models show each determinant differentially contributes to acute immune variation, with unique and interactive, location-specific herpesvirus effects. These results provide novel insight into the scope of immune heterogeneity across diverse populations, the integrative effects of factors which drive it, and the consequences for illness outcomes.

13.
Blood Adv ; 7(11): 2538-2550, 2023 06 13.
Article in English | MEDLINE | ID: mdl-36689724

ABSTRACT

Cytarabine arabinoside (Ara-C) has been the cornerstone of acute myeloid leukemia (AML) chemotherapy for decades. After cellular uptake, it is phosphorylated into its active triphosphate form (Ara-CTP), which primarily exerts its cytotoxic effects by inhibiting DNA synthesis in proliferating cells. Interpatient variation in the enzymes involved in the Ara-C metabolic pathway has been shown to affect intracellular abundance of Ara-CTP and, thus, its therapeutic benefit. Recently, SAMHD1 (SAM and HD domain-containing deoxynucleoside triphosphate triphosphohydrolase 1) has emerged to play a role in Ara-CTP inactivation, development of drug resistance, and, consequently, clinical response in AML. Despite this, the impact of genetic variations in SAMHD1 on outcome in AML has not been investigated in depth. In this study, we evaluated 25 single nucleotide polymorphisms (SNPs) within the SAMHD1 gene for association with clinical outcome in 400 pediatric patients with newly diagnosed AML from 2 clinical trials, AML02 and AML08. Three SNPs, rs1291128, rs1291141, and rs7265241 located in the 3' region of SAMHD1 were significantly associated with at least 1 clinical outcome: minimal residual disease after induction I, event-free survival (EFS), or overall survival (OS) in the 2 cohorts. In an independent cohort of patients from the COG-AAML1031 trial (n = 854), rs7265241 A>G remained significantly associated with EFS and OS. In multivariable analysis, all the SNPs remained independent predictors of clinical outcome. These results highlight the relevance of the SAMHD1 pharmacogenomics in context of response to Ara-C in AML and warrants the need for further validation in expanded patient cohorts.


Subject(s)
Leukemia, Myeloid, Acute , SAM Domain and HD Domain-Containing Protein 1 , Child , Humans , Arabinofuranosylcytosine Triphosphate/metabolism , Arabinofuranosylcytosine Triphosphate/therapeutic use , Cytarabine/therapeutic use , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Polymorphism, Single Nucleotide , SAM Domain and HD Domain-Containing Protein 1/genetics
14.
Nat Cancer ; 4(1): 27-42, 2023 01.
Article in English | MEDLINE | ID: mdl-36581735

ABSTRACT

Acute myeloid leukemia (AML) is a hematopoietic malignancy with poor prognosis and limited treatment options. Here we provide a comprehensive census of the bone marrow immune microenvironment in adult and pediatric patients with AML. We characterize unique inflammation signatures in a subset of AML patients, associated with inferior outcomes. We identify atypical B cells, a dysfunctional B-cell subtype enriched in patients with high-inflammation AML, as well as an increase in CD8+GZMK+ and regulatory T cells, accompanied by a reduction in T-cell clonal expansion. We derive an inflammation-associated gene score (iScore) that associates with poor survival outcomes in patients with AML. Addition of the iScore refines current risk stratifications for patients with AML and may enable identification of patients in need of more aggressive treatment. This work provides a framework for classifying patients with AML based on their immune microenvironment and a rationale for consideration of the inflammatory state in clinical settings.


Subject(s)
Leukemia, Myeloid, Acute , Adult , Humans , Child , Leukemia, Myeloid, Acute/genetics , Bone Marrow/pathology , T-Lymphocytes, Regulatory/pathology , Inflammation/pathology , Risk Assessment , Tumor Microenvironment
15.
Blood Adv ; 7(9): 1769-1783, 2023 05 09.
Article in English | MEDLINE | ID: mdl-36111891

ABSTRACT

Etoposide is used to treat a wide range of malignant cancers, including acute myeloid leukemia (AML) in children. Despite the use of intensive chemotherapeutic regimens containing etoposide, a significant proportion of pediatric patients with AML become resistant to treatment and relapse, leading to poor survival. This poses a pressing clinical challenge to identify mechanisms underlying drug resistance to enable effective pharmacologic targeting. We performed a genome-wide CRISPR/Cas9 synthetic-lethal screening to identify functional modulators of etoposide response in leukemic cell line and integrated results from CRISPR-screen with gene expression and clinical outcomes in pediatric patients with AML treated with etoposide-containing regimen. Our results confirmed the involvement of well-characterized genes, including TOP2A and ABCC1, as well as identified novel genes such as RAD54L2, PRKDC, and ZNF451 that have potential to be novel drug targets. This study demonstrates the ability for leveraging CRISPR/Cas9 screening in conjunction with clinically relevant endpoints to make meaningful discoveries for the identification of prognostic biomarkers and novel therapeutic targets to overcome treatment resistance.


Subject(s)
CRISPR-Cas Systems , Leukemia, Myeloid, Acute , Humans , Child , Etoposide/pharmacology , Etoposide/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Cell Line , DNA Helicases/genetics
16.
Front Bioinform ; 2: 897238, 2022.
Article in English | MEDLINE | ID: mdl-36304323

ABSTRACT

Biomolecular condensates are cellular organelles formed through liquid-liquid phase separation (LLPS) that play critical roles in cellular functions including signaling, transcription, translation, and stress response. Importantly, condensate misregulation is associated with human diseases, including neurodegeneration and cancer among others. When condensate-forming biomolecules are fluorescently-labeled and examined with fluorescence microscopy they appear as illuminated foci, or puncta, in cells. Puncta features such as number, volume, shape, location, and concentration of biomolecular species within them are influenced by the thermodynamics of biomolecular interactions that underlie LLPS. Quantification of puncta features enables evaluation of the thermodynamic driving force for LLPS and facilitates quantitative comparisons of puncta formed under different cellular conditions or by different biomolecules. Our work on nucleoporin 98 (NUP98) fusion oncoproteins (FOs) associated with pediatric leukemia inspired us to develop an objective and reliable computational approach for such analyses. The NUP98-HOXA9 FO forms hundreds of punctate transcriptional condensates in cells, leading to hematopoietic cell transformation and leukemogenesis. To quantify the features of these puncta and derive the associated thermodynamic parameters, we developed a live-cell fluorescence microscopy image processing pipeline based on existing methodologies and open-source tools. The pipeline quantifies the numbers and volumes of puncta and fluorescence intensities of the fluorescently-labeled biomolecule(s) within them and generates reports of their features for hundreds of cells. Using a standard curve of fluorescence intensity versus protein concentration, the pipeline determines the apparent molar concentration of fluorescently-labeled biomolecules within and outside of puncta and calculates the partition coefficient (Kp) and Gibbs free energy of transfer (ΔGTr), which quantify the favorability of a labeled biomolecule partitioning into puncta. In addition, we provide a library of R functions for statistical analysis of the extracted measurements for certain experimental designs. The source code, analysis notebooks, and test data for the Punctatools pipeline are available on GitHub: https://github.com/stjude/punctatools. Here, we provide a protocol for applying our Punctatools pipeline to extract puncta features from fluorescence microscopy images of cells.

17.
Nat Genet ; 54(9): 1376-1389, 2022 09.
Article in English | MEDLINE | ID: mdl-36050548

ABSTRACT

Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. Here, using whole-genome, exome and transcriptome sequencing of 2,754 childhood patients with ALL, we find that, despite a generally low mutation burden, ALL cases harbor a median of four putative somatic driver alterations per sample, with 376 putative driver genes identified varying in prevalence across ALL subtypes. Most samples harbor at least one rare gene alteration, including 70 putative cancer driver genes associated with ubiquitination, SUMOylation, noncoding transcripts and other functions. In hyperdiploid B-ALL, chromosomal gains are acquired early and synchronously before ultraviolet-induced mutation. By contrast, ultraviolet-induced mutations precede chromosomal gains in B-ALL cases with intrachromosomal amplification of chromosome 21. We also demonstrate the prognostic significance of genetic alterations within subtypes. Intriguingly, DUX4- and KMT2A-rearranged subtypes separate into CEBPA/FLT3- or NFATC4-expressing subgroups with potential clinical implications. Together, these results deepen understanding of the ALL genomic landscape and associated outcomes.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Child , Chromosome Aberrations , Exome/genetics , Genomics , Humans , Mutation , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
18.
J Clin Invest ; 132(21)2022 11 01.
Article in English | MEDLINE | ID: mdl-36074606

ABSTRACT

SAMD9 and SAMD9L germline mutations have recently emerged as a new class of predispositions to pediatric myeloid neoplasms. Patients commonly have impaired hematopoiesis, hypocellular marrows, and a greater risk of developing clonal chromosome 7 deletions leading to MDS and AML. We recently demonstrated that expressing SAMD9 or SAMD9L mutations in hematopoietic cells suppresses their proliferation and induces cell death. Here, we generated a mouse model that conditionally expresses mutant Samd9l to assess the in vivo impact on hematopoiesis. Using a range of in vivo and ex vivo assays, we showed that cells with heterozygous Samd9l mutations have impaired stemness relative to wild-type counterparts, which was exacerbated by inflammatory stimuli, and ultimately led to bone marrow hypocellularity. Genomic and phenotypic analyses recapitulated many of the hematopoietic cellular phenotypes observed in patients with SAMD9 or SAMD9L mutations, including lymphopenia, and pinpointed TGF-ß as a potential targetable pathway. Further, we observed nonrandom genetic deletion of the mutant Samd9l locus on mouse chromosome 6, mimicking chromosome 7 deletions observed in patients. Collectively, our study has enhanced our understanding of mutant Samd9l hematopoietic phenotypes, emphasized the synergistic role of inflammation in exaggerating the associated hematopoietic defects, and provided insights into potential therapeutic options for patients.


Subject(s)
Neoplasms , Tumor Suppressor Proteins , Mice , Animals , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Hematopoiesis/genetics , Germ-Line Mutation , Transcription Factors/genetics , Chromosome Deletion , Neoplasms/genetics , Syndrome , Bone Marrow Failure Disorders
19.
Clin Cancer Res ; 28(12): 2536-2546, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35344039

ABSTRACT

PURPOSE: To evaluate the safety, activity, and emergence of FLT3-kinase domain (KD) mutations with combination therapy of crenolanib and sorafenib in acute myeloid leukemia (AML) with FLT3-internal tandem duplication (ITD). PATIENTS AND METHODS: After in vitro and xenograft efficacy studies using AML cell lines that have FLT3-ITD with or without FLT3-KD mutation, a pilot study was performed with crenolanib (67 mg/m2/dose, three times per day on days 1-28) and two dose levels of sorafenib (150 and 200 mg/m2/day on days 8-28) in 9 pediatric patients with refractory/relapsed FLT3-ITD-positive AML. Pharmacokinetic, pharmacodynamic, and FLT3-KD mutation analysis were done in both preclinical and clinical studies. RESULTS: The combination of crenolanib and sorafenib in preclinical models showed synergy without affecting pharmacokinetics of each agent, inhibited p-STAT5 and p-ERK for up to 8 hours, and led to significantly better leukemia response (P < 0.005) and survival (P < 0.05) compared with single agents. Fewer FLT3-KD mutations emerged with dose-intensive crenolanib (twice daily) and low-intensity sorafenib (three times/week) compared with daily crenolanib or sorafenib (P < 0.05). The crenolanib and sorafenib combination was tolerable without dose-limiting toxicities, and three complete remissions (one with incomplete count recovery) and one partial remission were observed in 8 evaluable patients. Median crenolanib apparent clearance showed a nonsignificant decrease during treatment (45.0, 40.5, and 20.3 L/hour/m2 on days 1, 7, and 14, respectively) without drug-drug interaction. Only 1 patient developed a FLT3-KD mutation (FLT3 F691L). CONCLUSIONS: The combination of crenolanib and sorafenib was tolerable with antileukemic activities and rare emergence of FLT3-TKD mutations, which warrants further investigation.


Subject(s)
Antineoplastic Agents , Benzimidazoles , Leukemia, Myeloid, Acute , Piperidines , Antineoplastic Agents/therapeutic use , Benzimidazoles/therapeutic use , Child , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Mutation , Phenylurea Compounds , Pilot Projects , Piperidines/therapeutic use , Protein Kinase Inhibitors/pharmacology , Sorafenib/therapeutic use , fms-Like Tyrosine Kinase 3/antagonists & inhibitors
20.
Blood Cancer Discov ; 3(3): 194-207, 2022 05 05.
Article in English | MEDLINE | ID: mdl-35176137

ABSTRACT

The genetics of relapsed pediatric acute myeloid leukemia (AML) has yet to be comprehensively defined. Here, we present the spectrum of genomic alterations in 136 relapsed pediatric AMLs. We identified recurrent exon 13 tandem duplications (TD) in upstream binding transcription factor (UBTF) in 9% of relapsed AML cases. UBTF-TD AMLs commonly have normal karyotype or trisomy 8 with cooccurring WT1 mutations or FLT3-ITD but not other known oncogenic fusions. These UBTF-TD events are stable during disease progression and are present in the founding clone. In addition, we observed that UBTF-TD AMLs account for approximately 4% of all de novo pediatric AMLs, are less common in adults, and are associated with poor outcomes and MRD positivity. Expression of UBTF-TD in primary hematopoietic cells is sufficient to enhance serial clonogenic activity and to drive a similar transcriptional program to UBTF-TD AMLs. Collectively, these clinical, genomic, and functional data establish UBTF-TD as a new recurrent mutation in AML. SIGNIFICANCE: We defined the spectrum of mutations in relapsed pediatric AML and identified UBTF-TDs as a new recurrent genetic alteration. These duplications are more common in children and define a group of AMLs with intermediate-risk cytogenetic abnormalities, FLT3-ITD and WT1 alterations, and are associated with poor outcomes. See related commentary by Hasserjian and Nardi, p. 173. This article is highlighted in the In This Issue feature, p. 171.


Subject(s)
Leukemia, Myeloid, Acute , Adult , Child , Chromosome Aberrations , Exons , Genomics , Humans , Leukemia, Myeloid, Acute/genetics , Mutation , Recurrence
SELECTION OF CITATIONS
SEARCH DETAIL
...