Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 267: 115619, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37890246

ABSTRACT

Mercury (Hg) is a very toxic decomposition-resistant metal that can cause plant toxicity through bioaccumulation and oxidative damage. Biochar, derived from organic waste and agricultural garbage, is an on-site modification technique that can improve soil health in heavy metals-polluted regions. The present experiment was designed to explore the role of apple biochar in the management of mercury toxicity in corn (Zea mays cv. 'PL535'). Different levels of biochar derived from apple wood (0%, 2.5%, 5.0%, and 7.5% w/w) along with different Hg concentrations (0, 20, 40, and 60 mg/L) were used in the experiment that was based on a completely randomized design. Based on the results, HgCl2 at all rates reduced root and shoot dry weight and length, tolerance index, chlorophyll a and b content, the Hill reaction, and dissolved proteins and increased shoot and root Hg content (up to 72.57 and 717.56 times, respectively), cell death (up to 58.36%), MDA level (up to 47.82%), H2O2 (up to 66.33%), dissolved sugars, and proline. The results regarding enzymatic and non-enzymatic antioxidants revealed increases in total phenol and flavonoids content (up to 71.27% and 86.71%, respectively), DPPH free radical scavenging percentage, and catalase (CAT) and ascorbate peroxidase (APX) activity (up to 185.93% and 176.87%, respectively), in corn leaves with the increase in the Hg rate applied to the culture medium. The application of biochar to the substrate of the Hg-treated corns reduced Hg bioavailability, thereby reducing Hg accumulation in the roots (up to 76.88%) and shoots (up to 71.79%). It also reduced the adverse effect of Hg on the plants by increasing their shoot and root dry weight, photosynthesizing pigments, Hill reaction, and APX activity and reducing cell death, H2O2 content, and MDA content. The results reflected the capability of apple wood biochar at all rates in reducing Hg bioavailability and increasing Hg fixation in Hg-polluted soils. However, it was most effective at the rate of 7.5%.


Subject(s)
Malus , Mercury , Zea mays , Antioxidants , Chlorophyll A , Hydrogen Peroxide , Mercury/toxicity , Wood , Zea mays/drug effects
2.
Ecotoxicol Environ Saf ; 248: 114320, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36423373

ABSTRACT

Environmental stresses, including heavy metal pollution, are increasing at a growing rate and influencing arable lands. Chelators play an essential role in several biochemical pathways in the cells of plants treated with heavy metals. This research evaluated the modifying effect of malic acid (MA) and ethylenediaminetetraacetic acid (EDTA) on the physiological and biochemical parameters of okra plants exposed to Cd stress in which the okra plants were cultivated in hydroponic conditions. At the 4-leaf stage, they were applied with the treatments of cadmium nitrate at three levels (0, 50, and 100 mg/L), EDTA and MA at two levels (0.5 and 1 mM), and Cd + EDTA + MA at different rates for one month. The harvested plants were subjected to the measurement of the physico-biochemical factors. The results revealed that the application of Cd alone reduced leaf area (up to 21.57 %), and dissolved sugars (up to 40.51 % in the shoot and 45.19 % in the root) and increased MDA (up to 66.37 % and 76.43 % in the shoot and root, respectively), H2O2 (up to 67.14 % and 53.28 % in the shoot and root, respectively), proline (up to 52.04 % and 40.93 % in the shoot and root, respectively), and dissolved proteins (up to 14.59 % and 21.90 % in the shoot and root, respectively) contents in both shoots and roots whereas the application of MA and EDTA to the Cd-treated plants increased their leaf area and dissolved sugars and reduced MDA, H2O2, proline, and dissolved proteins content. The antioxidant enzymes, e.g., superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX), were significantly higher in the plants treated with MA, EDTA, and Cd, but the application of MA and EDTA to the Cd-treated plants reduced the activity of all these antioxidant enzymes versus the plants only treated with Cd. MA and EDTA are likely to prevent the accumulation of Cd in the cytosol by binding to it and transferring it into vacuoles, thereby mitigating Cd toxicity in the okra plants.


Subject(s)
Abelmoschus , Antioxidants , Cadmium/toxicity , Edetic Acid/pharmacology , Hydrogen Peroxide , Oxidative Stress , Proline , Sugars
3.
Plants (Basel) ; 10(9)2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34579314

ABSTRACT

Nowadays, the extract of seaweeds has drawn attention as a rich source of bioactive metabolites. Seaweeds are known for their biologically active compounds whose antibacterial and antifungal activities have been documented. This research aimed to study the profile of phenolic compounds using the HPLC method and determine biologically active compounds using the GC-MS method and the antifungal activity of Gracilariopsis persica against plant pathogenic fungi. G. persica was collected from its natural habitat in Suru of Bandar Abbas, Iran, dried, and extracted by methanol. The quantitative results on phenolic compounds using the HPLC method showed that the most abundant compounds in G. persica were rosmarinic acid (20.9 ± 0.41 mg/kg DW) and quercetin (11.21 ± 0.20 mg/kg DW), and the least abundant was cinnamic acid (1.4 ± 0.10 mg/kg DW). The GC-MS chromatography revealed 50 peaks in the methanolic extract of G. persica, implying 50 compounds. The most abundant components included cholest-5-en-3-ol (3 beta) (27.64%), palmitic acid (17.11%), heptadecane (7.71%), and palmitic acid methyl ester (6.66%). The antifungal activity of different concentrations of the extract was determined in vitro. The results as to the effect of the alga extract at the rates of 200, 400, 600, 800, and 1000 µL on the mycelial growth of four important plant pathogenic fungi, including Botrytis cinerea, Aspergillus niger, Penicillium expansum, and Pyricularia oryzae, revealed that the mycelial growth of all four fungi was lower at higher concentrations of the alga extract. However, the extract concentration of 1000 µL completely inhibited their mycelial growth. The antifungal activity of this alga may be related to the phenolic compounds, e.g., rosmarinic acid and quercetin, as well as compounds such as palmitic acid, oleic acid, and other components identified using the GC-MS method whose antifungal effects have already been confirmed.

4.
Sci Rep ; 11(1): 11399, 2021 05 31.
Article in English | MEDLINE | ID: mdl-34059724

ABSTRACT

Nigella sativa L. is a medicinal plant with extensive, nutritional, pharmaceutical, and health applications. Nowadays, reducing the application of chemical fertilizers (synthetic fertilizers) is one of the main goals of sustainable agriculture to allow the production of safe crops. Therefore, the combined effect of urea and biofertilizers was studied on the quantitative and qualitative traits of N. sativa L. in a randomized complete block design with 10 treatments and three replications. The treatments included control (no fertilization), U (100% chemical fertilizer as urea at 53.3 kg ha-1, Nb (Biofertilizer, Azotobacter vinelandii), Pb (Biofertilizer, Pantoea agglomerans and Pseudomonas putida), Kb (Biofertilizer, Bacillus spp.), NPKb (NPK, biofertilizer), Nb + 50% U, Pb + 50% U, Kb + 50%U and NPKb + 50% U. The NPK(b) + U50% was related to the highest quantity of plant height, branch diameter, capsule (follicle) number per plant, auxiliary branches, seed yield per plant, thousand-seed weight, essential oil content, total phenolic compounds, flavonoid content, DPPH free radical scavenging, nitric oxide (NO) radical scavenging, superoxide radical scavenging, chain-breaking activity, phosphorus content, and potassium content, along with U for the highest biological yield and (Pb) + U50% for the highest essential oil percentage which is close to (NPKb) + U50%. The lowest value was observed in all traits related to the control treatment except for branch diameter that was related to (NPKb). Hence, the application of (NPKb) + U50% as bio-chemical fertilizers improved N. sativa L. Traits, so it can be recommended.

5.
Ecotoxicol Environ Saf ; 208: 111607, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33396127

ABSTRACT

The present study aimed to explore the effect of synthetic and naturally occurring chelators, EDTA and citric acid (CA), respectively, on changes in physiological and biochemical factors including cell death, level of mercury ions accumulation, malondialdehyde (MDA) content, total phenol and total flavonoids, anthocyanins and DPPH free radical scavenging activity, in the leaves of okra (Abelmoschus esculentus L.) plants exposed to mercury stress. In addition, polyphenolic compounds profile was assessed by high-performance liquid chromatography. The okras were planted in completely controlled hydroponic conditions (Hoagland solution). After they reached the four-leaf stage, they were treated simultaneously with different concentrations of HgCl2, EDTA and CA chelators, and their combination for one month. At the stage of maturity, the physiological and biochemical factors of the plant leaves were measured. The results showed that with the application of higher concentration of HgCl2, cell death, level of shoot and root Hg2+ content and root MDA, total phenols and total flavonoids, anthocyanin content, and DPPH free radical scavenging activity were increased. Also, the results indicated that okra plants have high biomass and a high rate of Hg mobilization and accumulation in the shoot versus the roots (TF=2.152 for the plants treated with 60 mg L-1 Hg2+), hence, can be considered as Hg hyperaccumulator plant for the phytoremediation of Hg-polluted soils and waters. In the Hg-treated plants changes in their phenolic profile were induced, and the increase of chlorogenic acid, rosmaric acid, apigenin, quercetin and rutin content was observed. The application of EDTA and CA improved the toxic effects of Hg2+, by modifying phenolic compounds, chelating Hg2+, and its proper compartmentation, while EDTA outperformed CA in this respect. Based on the results, it could be concluded that due to the high biomass and growth of okra in the presence of Hg2+, this plant is suitable for phytoremediation of soil and water contaminated with mercury. In addition, EDTA and CA can play a significant role in removing this toxic metal through transferring it from the culture medium to the plant.


Subject(s)
Abelmoschus/drug effects , Citric Acid/pharmacology , Edetic Acid/pharmacology , Mercury/toxicity , Phenols/metabolism , Soil Pollutants/toxicity , Abelmoschus/growth & development , Abelmoschus/metabolism , Biochemical Phenomena/drug effects , Biodegradation, Environmental , Biomass , Malondialdehyde/metabolism , Mercury/analysis , Phenols/analysis , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/metabolism , Soil/chemistry , Soil Pollutants/analysis
6.
Plants (Basel) ; 9(2)2020 Feb 16.
Article in English | MEDLINE | ID: mdl-32079133

ABSTRACT

Balangu (Lallemantia sp.) is a medicinal herb with a variety of applications, all parts of which have economic uses, including leaf for extraction of essential oils, as a vegetable and potherb, seed for extraction of mucilage and edible or industrial oil. To investigate the effect of cultivation season and standard chemical and nano fertilizers (n) on the yield components and antioxidant properties of Dragon's head, a factorial experiment based on randomized complete block design was conducted with 12 treatments and three replications. Experimental treatments consisted of two seasons (spring and winter cultivation) and six levels of fertilizer (control, NPK-s, NPK-n, Fe-chelated-n, NPK-n + Fe-chelated-n, NPK-s + NPK-n + Fe-chelated-n). The traits included grain yield per plant, essential oil percentage and yield, mucilage percentage and yield, antioxidant properties in the seeds and leaves, including total phenols and flavonoids content, DPPH radical scavenging, and nitric oxide and superoxide radical scavenging. The results showed that winter cultivation had a noticeable advantage over spring cultivation across all of the traits. The highest grain yield per plant was obtained in winter cultivation using NPK-n + Fe-chelated-n fertilizer treatment. The highest essential oil percentage was in NPK-n + Fe-chelated-n. The highest mucilage percentage was observed in NPK-s + NPK-n + Fe-chelated-n fertilizer treatment, which was not statistically different to NPK-n + Fe-chelated-n treatment. The combined effects of winter cultivation and NPK-n + Fe-chelated-n fertilizers resulted in improving antioxidant activity traits. Overall, the results indicated that the combination of winter cultivation and NPK-n + Fe-chelated-n fertilizers are the most appropriate treatment to acquire highest qualitative and quantitative yield of Dragon's head, in the Azerbaijan region (Iran).

7.
Pak J Biol Sci ; 10(22): 4092-6, 2007 Nov 15.
Article in English | MEDLINE | ID: mdl-19090285

ABSTRACT

Growth parameters and biochemical changes were studied in roots and leaves of 15 day old maize grown in a nutrient solution containing various copper concentrations (0, 25, 50, 75 and 100 microM). An accumulation of H2O2 was observed in roots and shoots. The leaf chlorophyll a, b and carotenoid contents decreased with increasing Cu concentration. The results demonstrated adverse effects of Cu on N metabolism and plant growth. Cu exposure elevated Cu concentration and decreased Nitrate Reductase (NR) activity in the roots and shoots. However, Cu exposure increased total free amino acid content in the leaves.


Subject(s)
Seeds/metabolism , Carotenoids/analysis , Chlorophyll/analysis , Chlorophyll A , Copper/analysis , Copper/chemistry , Dose-Response Relationship, Drug , Electrons , Nitrate Reductase/metabolism , Photochemistry/methods , Plant Roots/metabolism , Plant Shoots/metabolism , Time Factors , Zea mays
8.
Pak J Biol Sci ; 10(20): 3662-7, 2007 Oct 15.
Article in English | MEDLINE | ID: mdl-19093478

ABSTRACT

Maize seedlings treated with various concentrations (25-100 microM) of copper for 15 days. A progressive decrease of root length and biomass with increasing Cu in nutrient solution was observed. The roots accumulated significantly higher amounts of Cu than the above ground parts. Accumulation of copper resulted in more active lipid peroxidation in both roots and shoots, which was attributed to copper-induced additional oxidative stress. Activities of APX (ascorbate peroxidase), GPX (guaiacol peroxidase), GR (glutathione reductase) and CAT(catalase) were higher in both roots and shoots in response to copper accumulation. Changes in lipid peroxidation and antioxidant enzyme activities suggest that oxidative damage may be involved in copper toxicity.


Subject(s)
Antioxidants/metabolism , Copper/pharmacology , Zea mays/drug effects , Zea mays/metabolism , Ascorbate Peroxidases , Biomass , Catalase/metabolism , Glutathione Reductase/metabolism , Lipid Peroxidation , Oxidation-Reduction , Oxidative Stress , Peroxidase/metabolism , Peroxidases/metabolism , Plant Proteins/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Seedlings/anatomy & histology , Seedlings/drug effects , Seedlings/growth & development , Seedlings/metabolism , Zea mays/anatomy & histology , Zea mays/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...