Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Environ Technol ; 44(2): 197-210, 2023 Jan.
Article in English | MEDLINE | ID: mdl-34380379

ABSTRACT

Oil interceptors are traditional SuDS devices used in highway runoff treatment to remove both floatable impurities (leaves, oil) and total suspended solids (TSS). This paper presents the results of an examination of the performance of an oil interceptor based on particle size distribution (PSD) and TSS during three rainfall events. The interceptor is situated on one of the busiest motorways in the UK (where peak traffic flow is 30,000 vehicles per hour). Although the overall data collected for this study provided evidence that the interceptor removed, in most cases, 70% of TSS, the data for particle size distribution (PSD) showed that the interceptor did not always cope with particle separation for particles of less than 25 µm diameter.


Subject(s)
Rain , Water Movements , Environmental Monitoring/methods
2.
iScience ; 25(11): 105253, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36281449

ABSTRACT

Floating photovoltaic (FPV) plants present several benefits in comparison with ground-mounted photovoltaics (PVs) and could have major positive environmental and technical impacts globally. FPVs do not occupy habitable and productive areas and can be deployed in degraded environments and reduce land-use conflicts. Saving water through mitigating evaporation and improving water security in arid regions combined with the flexibility for deployment on different water bodies including drinking water reservoirs are other advantages of FPVs. They also have higher efficiency than ground-mounted PV solar and are compatible with the existing hydropower infrastructures, which supports diversifying the energy supply and its resilience. Despite the notable growth of FPVs on an international scale, lack of supporting policies and development roadmaps by the governments could hinder FPVs' sustainable growth. Long-term reliability of the floating structures is also one of the existing concerns that if not answered could limit the expansion of this emerging technology.

3.
Environ Technol ; 43(11): 1732-1744, 2022 Apr.
Article in English | MEDLINE | ID: mdl-33180680

ABSTRACT

Although highway runoff has historically been extensively studied, the increasing complexity of stormwater management means that there are still significant gaps regarding the reduction of soluble metals. The work reported in this paper addresses these challenges by analysing the presence and behaviour of iron, copper and zinc in runoff from junction 24 of the M1 motorway in the UK (peak traffic flow: 30,000 vehicles per hour) and comparing it with other urban sources of metals found in the same catchment (a local brook and sewage treatment works). The sampling site included an interceptor and a treatment lagoon and the event monitoring indicated a trend by which the metals did not change their concentration or particulate soluble proportion immediately, hence showing that pre- and post-storm conditions are important factors when analysing the solubility of metals and their behaviour. The data provided further evidence of the important influence of storm characteristics on metal concentrations in highway runoff, in particular the effects of an antecedent dry weather period (ADWP). In addition, this study also helped us to better understand how the release of sodium the application of de-icer for road maintenance in winter affects the availability of zinc.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Copper/analysis , Dust/analysis , Environmental Monitoring , Metals/analysis , Metals, Heavy/analysis , Rain , Water Movements , Water Pollutants, Chemical/analysis , Zinc/analysis
4.
Sci Total Environ ; 793: 148654, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34182444

ABSTRACT

A major gap in understanding nanomaterials behaviour in the environment is a lack of reliable tools to measure their available concentrations. In this research we use diffusive gradients in thin films (DGT) for measuring concentrations of zinc oxide nanoparticles (ZNO NPs) in soils. Available nanoparticle concentrations were assessed by difference, using paired DGT devices with and without 1000 MWCO dialysis membranes to exclude NPs. We used ZnO because its toxic effects are accelerated through dissolution to Zn2+. Our test soils had different pH and organic matter (OM) contents, which both affect the dissolution rate of ZnO NPs. Woburn (pH ≈ 6.9, OM ≈ 1.8%) and Lufa (pH ≈ 5.9, OM ≈ 4.2%) soils were spiked to a single concentration of 500 mg of ZnO NPs per 1 kg of soil and the available concentrations of ZnO NPs and dissolved zinc were evaluated in 3, 7, 14, 21, 28, 60, 90, 120, 150 and 180 day intervals using DGT. The results showed that the dissolution of ZnO NPs, as well as the available concentrations of both dissolved and nanoparticulate Zn, was much higher in Lufa soil than in Woburn. This work demonstrates that DGT can be used as a simple yet reliable technique for determining concentrations of ZnO NPs in soils and probing its dissolution kinetics.


Subject(s)
Nanoparticles , Soil Pollutants , Zinc Oxide , Renal Dialysis , Soil , Soil Pollutants/analysis
5.
Sci Total Environ ; 729: 139053, 2020 Aug 10.
Article in English | MEDLINE | ID: mdl-32498181

ABSTRACT

West African populations are exposed to the longest and harshest dust storms on the planet, the Saharan sand and dust storms (SDS). Nonetheless, little is known about the effects of the severe storms on early-life health in West Africa. This study investigated the association of the risk of neonatal mortality, an indicator of the population's early-life health, with potential prenatal and neonatal exposure to the Saharan SDS. Data on 30,552 under-five children from Burkina Faso's 1993, 2003, and 2010 demographic and health surveys were matched to the particulate matters (PM) and terrestrial air temperature and precipitation forecasts. Exposure to dust events was measured by the number of days with average PM10 and PM2.5 concentrations above a series of threshold. Intensity-dependent patterns of associations between neonatal mortality and both prenatal and birth month exposure to dust events were identified. There was no association if average daily PM10 and PM2.5 levels were <60 and 30 µg/m3, respectively. However, strong associations, which increase almost linearly with the intensity of exposure, were identified when daily PM10 and PM2.5 levels ranged from 70 to 150 and from 40 to 70 µg/m3, respectively. At the higher PM levels, the association for the gestation period decreased, but that for the birth month remained mostly unresponsive to changes in the PM levels. Larger associations were identified when siblings were compared.


Subject(s)
Infant Mortality , Africa, Northern , Air Pollutants , Burkina Faso , Dust , Humans , Infant , Infant, Newborn , Particulate Matter , Sand
6.
Rev Environ Health ; 35(4): 379-399, 2020 Nov 18.
Article in English | MEDLINE | ID: mdl-32324166

ABSTRACT

Studies that assess the connection between the prevalence of chronic diseases and continuous exposure to air pollution are scarce in developing countries, mainly due to data limitations. Largely overcoming data limitations, this study aimed to investigate the association between the likelihood of reporting a set of chronic diseases (diabetes, cancer, stroke and myocardial infarction, asthma, and hypertension) and continuous exposure to carbon monoxide (CO), nitrogen dioxide (NO2), ozone (O3), and coarse particulate matter (PM10). Using the estimated associations, the disease burden and economic costs of continuous exposure to air pollutants were also approximated. A 2011 Health Equity Assessment and Response Tool survey from Tehran, Iran, was used in the main analyses. A sample of 67,049 individuals who had not changed their place of residence for at least 2 years before the survey and reported all relevant socioeconomic information was selected. The individuals were assigned with the average monthly air pollutant levels of the nearest of 16 air quality monitors during the 2 years leading to the survey. Both single- and multi-pollutant analyses were conducted. The country's annual household surveys from 2002 to 2011 were used to calculate the associated economic losses. The single-pollutant analysis showed that a one-unit increase in monthly CO (ppm), NO2 (ppb), O3 (ppb), and PM10 (µg/m3) during the 2 years was associated with 751 [confidence interval (CI): 512-990], 18 (CI: 12-24), 46 (CI: -27-120), and 24 (CI: 13-35) more reported chronic diseases in 100,000, respectively. The disease-specific analyses showed that a unit change in average monthly CO was associated with 329, 321, 232, and 129 more reported cases of diabetes, hypertension, stroke and myocardial infarction, and asthma in 100,000, respectively. The measured associations were greater in samples with older individuals. Also, a unit change in average monthly O3 was associated with 21 (in 100,000) more reported cases of asthma. The multi-pollutant analyses confirmed the results from single-pollutant analyses. The supplementary analyses showed that a one-unit decrease in monthly CO level could have been associated with about 208 (CI: 147-275) years of life gained or 15.195 (CI: 10.296-20.094) thousand US dollars (USD) in life-time labor market income gained per 100,000 30-plus-year-old Tehranis.


Subject(s)
Air Pollutants/adverse effects , Air Pollution/adverse effects , Carbon Monoxide/adverse effects , Chronic Disease/epidemiology , Cost of Illness , Air Pollutants/economics , Air Pollution/economics , Cities , Iran/epidemiology , Nitrogen Dioxide/adverse effects , Ozone/adverse effects , Particulate Matter/adverse effects , Prevalence
7.
Environ Sci Process Impacts ; 19(4): 622-634, 2017 Apr 19.
Article in English | MEDLINE | ID: mdl-28352865

ABSTRACT

In this research, bacterial cell attachments to hematite, goethite and aluminium hydroxide were investigated. The aim was to study the effects of these minerals' hydrophobicity and pH-dependent surface charge on the extent of biofilm formation using six genetically diverse bacterial strains: Rhodococcus spp. (RC92 & RC291), Pseudomonas spp. (Pse1 & Pse2) and Sphingomonas spp. (Sph1 & Sph2), which had been previously isolated from contaminated environments. The surfaces were prepared in a way that was compatible with the naturally occurring coating process in aquifers: deposition of colloidal particles from the aqueous phase. The biofilms were evaluated using a novel, in situ and non-invasive technique developed for this purpose. A manufactured polystyrene 12-well plate was used as the reference surface to be coated with synthesized minerals by deposition of their suspended particles through evaporation. Planktonic phase growth indicates that it is independent of the surface charge and hydrophobicity of the studied surfaces. The hydrophobic similarities failed to predict biofilm proliferation. Two of the three hydrophilic strains formed extensive biofilms on the minerals. The third one, Sph2, showed anomalies in contrast to the expected electrostatic attraction between the minerals and the cell surface. Further research showed how the solution's ionic strength affects Sph2 surface potential and shapes the extent of its biofilm formation; reducing the ionic strength from ≈200 mM to ≈20 mM led to a tenfold increase in the number of cells attached to hematite. This study provides a technique to evaluate biofilm formation on metal-oxide surfaces, under well-controlled conditions, using a simple yet reliable method. The findings also highlight that cell numbers in the planktonic phase do not necessarily show the extent of cell attachment, and thorough physicochemical characterization of bacterial strains, substrata and the aquifer medium is fundamental to successfully implementing any bioremediation projects.


Subject(s)
Aluminum Oxide/chemistry , Bacterial Adhesion , Biofilms/growth & development , Cell Adhesion , Hydrophobic and Hydrophilic Interactions , Iron/chemistry , England , Pseudomonas/growth & development , Rhodococcus/growth & development , Sphingomonas/growth & development
8.
Chemosphere ; 112: 377-84, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25048930

ABSTRACT

Understanding how organisms respond to trace elements is important because some are essential for normal bodily homeostasis, but can additionally be toxic at high concentrations. The inflection point for many of these elements is unknown and requires sensitive techniques capable of detecting subtle cellular changes as well as cytotoxic alterations. In this study, we treated human cells with arsenic (As), copper or selenium (Se) in a dose-response manner and used attenuated total reflection Fourier-transform infrared (ATR-FTIR) microspectroscopy combined with computational analysis to examine cellular alterations. Cell cultures were treated with As(V), Cu(2+) or Se(IV) at concentrations ranging from 0.001 mg L(-1) to 1000 mg L(-1) and their effects were spectrochemically determined. Results show that As(V) and Cu(2+) induce bimodal dose-response effects on cells; this is in line with hormesis-driven responses. Lipids and proteins seem to be the main cell targets for all the elements tested; however, each compound produced a unique fingerprint of effect. Spectral biomarkers indicate that all test agents generate reactive oxygen species (ROS), which could either stimulate repair mechanisms or induce damage in cells.


Subject(s)
Arsenic/pharmacology , Arsenic/toxicity , Copper/pharmacology , Copper/toxicity , Hormesis/drug effects , Selenium/pharmacology , Selenium/toxicity , Dose-Response Relationship, Drug , Environmental Pollutants/pharmacology , Environmental Pollutants/toxicity , Humans , MCF-7 Cells , Multivariate Analysis , Spectroscopy, Fourier Transform Infrared
9.
Anal Chem ; 86(12): 5906-13, 2014 Jun 17.
Article in English | MEDLINE | ID: mdl-24831848

ABSTRACT

Rapid growth in finding new applications for manufactured nanomaterials (MNM) has recently been accompanied by awareness about their related adverse toxicological and environmental impacts. Due to their intrinsic nature, measuring available concentrations of MNMs in the environment is a major challenge. This research is a launching point toward filling this gap, as it presents the potential of the well-established diffusive gradients in thin films (DGT) technique to determine MNMs concentrations in situ. Two binding layers commonly used in DGT devices were shown to be able to bind ZnO nanoparticles (ZnO NPs). The use of different types of diffusive layers demonstrated the critical role of their pore size for selective function of the DGT devices. The ZnO NPs can pass through the open pore diffusive layer used in standard DGT devices and be retained by the binding resin layer. However, the diffusion of ZnO NPs can be prevented when a 1000 MWCO (molecular weight cut off) dialysis membrane is placed in the front of the diffusive gel layer. A combination of two or more DGT devices with known diffusive layer properties should enable deduction of concentrations of available ZnO NPs in the environment. Unlike metal ions, determining diffusion coefficient values for ZnO NPs is challenging and greatly affected by shape, morphology, and solution-induced changes of the particles. Attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) demonstrated that retention of ZnO NPs by Chelex and Metsorb binding layers occurs through chemisorption. The superior uptake kinetic for Chelex indicates that it is a better candidate for further development of DGT devices to measure ZnO NPs. These initial results are promising and important for further developing the DGT technique to measure available concentrations of manufactured nanomaterials in the different environmental media (waters, soils, and sediments). Further experiments investigating the effects of pH, ionic strength, and solution chemistry on the performance of DGT for measuring MNM concentrations are needed.

10.
Environ Sci Technol ; 47(19): 11115-21, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-23947918

ABSTRACT

Advancements in nanotechnology and the expected increases in production of commercial products with incorporated manufactured nanomaterials will very likely lead to increasing contamination of nanoparticles (NPs) in the environment. Though studying adverse impacts of NPs in the environment and their ecotoxicological fate and behavior is not new, limited information is available. A major challenge in this respect is the lack of a proper sampling technique that could provide data on concentrations of these materials in the environment. Diffusive gradient in thin-films (DGT) is a well-established method that can measure available concentrations of trace metals in soils and waters. Using this approach, different binding resins are employed as a sink to collect targeted chemicals during fixed times. Here, we examine the suitability of two common types of the DGT binding agents, commercially available Chelex-100 and Metsorb, to investigate whether these materials could irreversibly retain a model nanoparticle, ZnO, and if so, what would be the difference between bound ZnO NP and Zn(2+) ion. Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy was used to study the binding materials before and after exposure to ZnO NP and Zn(2+). Based on computational analysis using principal component analysis and linear discriminant analysis (PCA-LDA), it was demonstrated that both Chelex-100 and Metsorb form chemical bonds with ZnO NP and Zn(2+), however the binding mechanisms of these zinc species as inferred from their infrared (IR) spectra are statistically different (95% confidence level). The experimental results suggest that the binding resins hold ZnO NP with fewer and weaker chemical bonds compared to Zn(2+). This research shows the potential of the DGT method to measure available concentrations of nanoparticles in the environment and demonstrate how ATR-FTIR spectroscopy, when used with computational analysis, can differentiate between diverse chemical species that are simultaneously retained by the binding layer in a DGT device.


Subject(s)
Cation Exchange Resins/chemistry , Metal Nanoparticles/chemistry , Resins, Synthetic/chemistry , Titanium/chemistry , Zinc Oxide/chemistry , Zinc/chemistry , Multivariate Analysis , Spectroscopy, Fourier Transform Infrared/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...