Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 57(3): 733-58, 2014 Feb 13.
Article in English | MEDLINE | ID: mdl-24410637

ABSTRACT

A new series of potent and selective histamine-3 receptor (H3R) antagonists was identified on the basis of an azaspiro[2.5]octane carboxamide scaffold. Many scaffold modifications were largely tolerated, resulting in nanomolar-potent compounds in the H3R functional assay. Exemplar compound 6s demonstrated a selective profile against a panel of 144 secondary pharmacological receptors, with activity at only σ2 (62% at 10 µM). Compound 6s demonstrated free-plasma exposures above the IC50 (∼50×) with a brain-to-plasma ratio of ∼3 following intravenous dosing in mice. At three doses tested in the mouse novel object recognition model (1, 3, and 10 mg/kg s.c.), 6s demonstrated a statistically significant response compared with the control group. This series represents a new scaffold of H3 receptor antagonists that demonstrates in vivo exposure and efficacy in an animal model of cognition.


Subject(s)
Cognition/drug effects , Cyclopropanes/chemical synthesis , Histamine H3 Antagonists/chemical synthesis , Piperazines/chemical synthesis , Receptors, Histamine H3/metabolism , Spiro Compounds/chemical synthesis , Animals , Azetidines/chemical synthesis , Azetidines/pharmacokinetics , Azetidines/pharmacology , CHO Cells , Cell Membrane Permeability , Cricetinae , Cricetulus , Cyclopropanes/pharmacokinetics , Cyclopropanes/pharmacology , Dogs , Histamine H3 Antagonists/pharmacokinetics , Histamine H3 Antagonists/pharmacology , Humans , Learning/drug effects , Madin Darby Canine Kidney Cells , Male , Mice , Microsomes, Liver/metabolism , Models, Molecular , Piperazines/pharmacokinetics , Piperazines/pharmacology , Piperidines/chemical synthesis , Piperidines/pharmacokinetics , Piperidines/pharmacology , Pyrrolidines/chemical synthesis , Pyrrolidines/pharmacokinetics , Pyrrolidines/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Histamine H3/genetics , Recognition, Psychology/drug effects , Spiro Compounds/pharmacokinetics , Spiro Compounds/pharmacology , Stereoisomerism , Structure-Activity Relationship
2.
J Med Chem ; 56(15): 6007-21, 2013 Aug 08.
Article in English | MEDLINE | ID: mdl-23586692

ABSTRACT

The medicinal chemistry subgroup of the American Chemical Society's Green Chemistry Institute Pharmaceutical Roundtable (ACS GCI PR) offers a perspective on the current state of environmentally sustainable practices in medicinal chemistry with the aim of sharing best practices more widely and highlighting some potential future developments.


Subject(s)
Chemistry, Pharmaceutical/trends , Drug Discovery/trends , Chemical Engineering/methods , Chemical Engineering/trends , Chemistry, Pharmaceutical/methods , Drug Discovery/methods , Green Chemistry Technology/methods , Green Chemistry Technology/trends
3.
Bioorg Med Chem Lett ; 22(4): 1619-24, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22284817

ABSTRACT

An oral, peripherally restricted CB1/CB2 agonist could provide an interesting approach to treat chronic pain by harnessing the analgesic properties of cannabinoids but without the well-known central side effects. γ-Carbolines are a novel class of potent mixed CB1/CB2 agonists characterized by attractive physicochemical properties including high aqueous solubility. Optimization of the series has led to the discovery of 29, which has oral activity in a rat inflammatory pain model and limited brain exposure at analgesic doses, consistent with a lower risk of CNS-mediated tolerability issues.


Subject(s)
Brain/metabolism , Cannabinoids/agonists , Carbolines/chemistry , Carbolines/pharmacology , Analgesics/chemistry , Analgesics/metabolism , Analgesics/pharmacology , Animals , Brain/drug effects , Carbolines/metabolism , Cell Line , Drug Stability , Humans , Molecular Structure , Pain/drug therapy , Rats , Solubility
4.
Org Lett ; 6(20): 3517-20, 2004 Sep 30.
Article in English | MEDLINE | ID: mdl-15387537

ABSTRACT

[reaction: see text] The addition of nucleophiles to 3-substituted pyridinium salts prepared from N-methylbenzamide and various pyridines has been investigated. Good to excellent regioselectivities favoring the 2,3-disubstituted 1,2-dihydropyridines were observed. The resulting 1,2-dihydropyridines led to the corresponding 2,3-disubstituted pyridines upon treatment with Mn(OAc)3/NaIO4. This methodology was also successfully applied to the enantioselective syntheses of (-)-L-733,061 and (-)-CP-99,994, two members of a new class of highly potent, nonpeptide, Substance P antagonists.


Subject(s)
Piperidines/chemical synthesis , Pyridinium Compounds/chemical synthesis , Substance P/antagonists & inhibitors , Molecular Structure , Piperidines/chemistry , Piperidines/pharmacology , Pyridinium Compounds/chemistry , Pyridinium Compounds/pharmacology , Stereoisomerism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...