Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 59(18): 8412-21, 2016 09 22.
Article in English | MEDLINE | ID: mdl-27526615

ABSTRACT

Thrombospondin-1 (TSP-1) is a glycoprotein considered as a key actor within the tumor microenvironment. Its binding to CD47, a cell surface receptor, triggers programmed cell death. Previous studies allowed the identification of 4N1K decapeptide derived from the TSP-1/CD47 binding epitope. Here, we demonstrate that this peptide is able to induce selective apoptosis of various cancer cell lines while sparing normal cells. A structure-activity relationship study led to the design of the first serum stable TSP-1 mimetic agonist peptide able to trigger selective programmed cell death (PCD) of at least lung, breast, and colorectal cancer cells. Altogether, these results will be of valuable interest for further investigation in the design of potent CD47 agonist peptides, opening new perspectives for the development of original anticancer therapies.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Peptides/chemistry , Peptides/pharmacology , Thrombospondin 1/agonists , Amino Acid Sequence , Apoptosis/drug effects , Cell Line, Tumor , Humans , Models, Molecular , Neoplasms/drug therapy , Neoplasms/metabolism , Structure-Activity Relationship , Thrombospondin 1/metabolism
2.
Bioorg Med Chem ; 24(6): 1362-8, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26895658

ABSTRACT

We describe for the first time the chemical synthesis of a tetramannoside, containing both α (1→2) and ß (1→2) linkages. Dodecylthio (lauryl) glycosides were prepared from odorless dodecyl thiol and used as donors for the glycosylation steps. This tetramannoside, was coupled to a mantyl group, and revealed to be a perfect substrate of ß-mannosyltransferase Bmt3, confirming the proposed specificity and allowing the preparation of a pentamannoside sequence (ß Man (1,2) ß Man (1,2) α Man (1,2) α Man (1,2) α Man) usable as a novel substrate for further elongation studies.


Subject(s)
Candida albicans/enzymology , Fluorescent Dyes/metabolism , Mannosides/metabolism , Mannosyltransferases/metabolism , Fluorescent Dyes/chemistry , Mannosides/chemistry , Molecular Conformation , Substrate Specificity
3.
Glycobiology ; 26(2): 203-14, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26525402

ABSTRACT

ß-1,2-Linked mannosides are expressed on numerous cell-wall glycoconjugates of the opportunistic pathogen yeast Candida albicans. Several studies evidenced their implication in the host-pathogen interaction and virulence mechanisms. In the present study, we characterized the in vitro activity of CaBmt3, a ß-1,2-mannosyltransferase involved in the elongation of ß-1,2-oligomannosides oligomers onto the cell-wall polymannosylated N-glycans. A recombinant soluble enzyme Bmt3p was produced in Pichia pastoris and its enzyme activity was investigated using natural and synthetic oligomannosides as potential acceptor substrates. Bmt3p was shown to exhibit an exquisite enzymatic specificity by adding a single terminal ß-mannosyl residue to α-1,2-linked oligomannosides capped by a Manß1-2Man motif. Furthermore, we demonstrated that the previously identified CaBmt1 and CaBmt3 efficiently act together to generate Manß1-2Manß1-2[Manα1-2]n sequence from α-1,2-linked oligomannosides onto exogenous and endogenous substrates.


Subject(s)
Candida/enzymology , Fungal Proteins/metabolism , Mannans/metabolism , Mannosyltransferases/metabolism , Phosphopeptides/metabolism , Candida/metabolism , Cell Wall/metabolism , Substrate Specificity
4.
Biochem J ; 457(2): 347-60, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24138199

ABSTRACT

The presence of ß-mannosides in their cell walls confers specific features on the pathogenic yeasts Candida albicans and Candida glabrata compared with non-pathogenic yeasts. In the present study, we investigated the enzymatic properties of Bmt1 (ß-mannosyltransferase 1), a member of the recently identified ß-mannosyltransferase family, from C. albicans. A recombinant soluble enzyme lacking the N-terminal region was expressed as a secreted protein from the methylotrophic yeast Pichia pastoris. In parallel, functionalized natural oligosaccharides isolated from Saccharomyces cerevisiae and a C. albicans mutant strain, as well as synthetic α-oligomannosides, were prepared and used as potential acceptor substrates. Bmt1p preferentially utilizes substrates containing linear chains of α-1,2-linked mannotriose or mannotetraose. The recombinant enzyme consecuti-vely transfers two mannosyl units on to these acceptors, leading to the production of α-mannosidase-resistant oligomannosides. NMR experiments further confirmed the presence of a terminal ßMan (ß-1,2-linked mannose) unit in the first enzyme product. In the future, a better understanding of specific ß-1,2-mannosyltransferase molecular requirements will help the design of new potential antifungal drugs.


Subject(s)
Candida albicans/enzymology , Cell Wall/enzymology , Mannans/chemistry , Mannosyltransferases/chemistry , Phosphopeptides/chemistry , Candida albicans/genetics , Mannans/genetics , Mannans/metabolism , Mannose/chemistry , Mannose/genetics , Mannose/metabolism , Mannosyltransferases/genetics , Mannosyltransferases/metabolism , Phosphopeptides/genetics , Phosphopeptides/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
5.
FEBS J ; 279(19): 3665-3679, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22846255

ABSTRACT

Cruzipain (Cz), the major cysteine proteinase of Trypanosoma cruzi, is a glycoprotein that contains sulfated high-mannose-type oligosaccharides. We have previously determined that these sulfate groups are targets of specific immune responses. In order to evaluate the structural requirements for antibody recognition of Cz, a systematic structure-activity study of the chemical characteristics needed for antibody binding to the Cz sulfated epitope was performed by immunoassays. With this aim, different synthesized molecules were coupled to the proteins BSA and aprotinin and confronted with (a) mouse sera specific for Cz and its carboxy-terminal (C-T) domain, (b) antibodies raised in rabbits immunized with Cz and its C-terminal domain and (c) IgGs purified from human Chagas disease sera. Our results indicate that a glucosamine containing an esterifying sulfate group in position O-6 and an N-acetyl group was the preferred epitope for the immune recognition of sera specific for Cz and its C-T domain. Although to a minor extent, other anionic compounds bearing sulfate groups in different positions and number as well as different anionic charged groups including carboxylated or phosphorylated monosaccharides, disaccharides and oligosaccharides were recognized. In conclusion, we found that synthetic anionic sugar conjugates containing N-acetyl d-glucosamine-6-sulfate sodium salt (GlcNAc6S) competitively inhibit the binding of affinity purified rabbit anti-C-T IgG to the C-T extension of Cz. Extending these findings to the context of natural infection, immune assays performed with Chagas disease serum confirmed that the structure of synthetic GlcNAc6S mimics the N-glycan-linked sulfated epitope displayed in the C-T domain of Cz.


Subject(s)
Acetylglucosamine/immunology , Anions/immunology , Chagas Disease/immunology , Cysteine Endopeptidases/immunology , Epitopes/immunology , Oligosaccharides/immunology , Sulfates/immunology , Trypanosoma cruzi/immunology , Adolescent , Adult , Animals , Case-Control Studies , Chagas Disease/blood , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Magnetic Resonance Spectroscopy , Male , Mice , Mice, Inbred BALB C , Middle Aged , Protozoan Proteins , Rabbits , Serologic Tests , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...