Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(11)2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37297334

ABSTRACT

Concrete compressive strength (CCS) is among the most important mechanical characteristics of this widely used material. This study develops a novel integrative method for efficient prediction of CCS. The suggested method is an artificial neural network (ANN) favorably tuned by electromagnetic field optimization (EFO). The EFO simulates a physics-based strategy, which in this work is employed to find the best contribution of the concrete parameters (i.e., cement (C), blast furnace slag (SBF), fly ash (FA1), water (W), superplasticizer (SP), coarse aggregate (AC), fine aggregate (FA2), and the age of testing (AT)) to the CCS. The same effort is carried out by three benchmark optimizers, namely the water cycle algorithm (WCA), sine cosine algorithm (SCA), and cuttlefish optimization algorithm (CFOA) to be compared with the EFO. The results show that hybridizing the ANN using the mentioned algorithms led to reliable approaches for predicting the CCS. However, comparative analysis indicates that there are appreciable distinctions between the prediction capacity of the ANNs created by the EFO and WCA vs. the SCA and CFOA. For example, the mean absolute error calculated for the testing phase of the ANN-WCA, ANN-SCA, ANN-CFOA, and ANN-EFO was 5.8363, 7.8248, 7.6538, and 5.6236, respectively. Moreover, the EFO was considerably faster than the other strategies. In short, the ANN-EFO is a highly efficient hybrid model, and can be recommended for the early prediction of the CCS. A user-friendly explainable and explicit predictive formula is also derived for the convenient estimation of the CCS.

2.
Chemosphere ; 335: 139134, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37295683

ABSTRACT

The difficulty of developing pollutants in aquatic ecosystems and their potential effects on animals and plants have been raised. Sewage effluent can seriously harm a river's plant and animal life by reducing the water's oxygen content. Due to their increasing use and poor elimination in traditional municipal wastewater treatment plants (WWTPs), pharmaceuticals are one of the developing pollutants that have the potential to penetrate aquatic ecosystems. Due to undigested pharmaceuticals and their metabolites, which constitute a significant class of potentially hazardous aquatic pollutants. Using an algae-based membrane bioreactor (AMBR), the primary objective of this research was to eliminate emerging contaminants (ECs) identified in municipal wastewater. The first part of this research covers the basics of growing algae, an explanation of how they work, and how they remove ECs. Second, it develops the membrane in the wastewater, explains its workings, and uses the membrane to remove ECs. Finally, an algae-based membrane bioreactor for removing ECs is examined. As a result, daily algal production using AMBR technology might range from 50 to 100 mg/Liter. These kinds of machines are capable of nitrogen and phosphorus removal efficiencies of 30-97% and 46-93%, respectively.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Water Purification , Wastewater , Ecosystem , Sewage , Water Pollutants, Chemical/analysis , Bioreactors , Pharmaceutical Preparations , Waste Disposal, Fluid
SELECTION OF CITATIONS
SEARCH DETAIL
...