Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 896: 165178, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37392889

ABSTRACT

This paper aims to understand the critical areas for sustainable behavioural change on a university campus in order to achieve the net zero­carbon ambition pre- and post-COVID-19 pandemic recovery. For this purpose, the current empirical study is the first attempt to statistically examine the whole campus as a system, considering staff and student views (campus users), by developing an index measuring propensity for sustainable behavioural change to achieve a net zero­carbon campus. The novelty of this study is based on the following: (i) The impact of environmental sustainability measures due to COVID-19 is examined on three themes: physical activity routines on a daily basis, research, and teaching and learning, and (ii) the index that is compatible with quantifying the behavioural change. A multi-indicator questionnaire is used to collect empirical data for each of the three themes. Based on 630 responses, descriptive statistical analysis, normality tests, significance tests, and t-tests are performed using statistical and graphical software, and conducting uncertainty and sensitivity analyses on this quantitative data. The study found that 95 % of campus users agreed to use reusable materials on campus, and 74 % were willing to pay more for sustainable products. In addition, 88 % agreed to seek alternative and sustainable transportation for short research trips, while 71 % prioritised online conferences and project meetings for sustainable hybrid working. Moreover, the COVID-19 pandemic had a negative impact on the frequency of reusable material usage among campus users, as indicated by the index analysis, which showed a significant decrease from 0.8536 to 0.3921. The statistical findings show that campus users are more likely to initiate and endorse environmental sustainability measures in research and daily life than in teaching and learning, and there is no difference in their propensity for change. This research provides net zero­carbon sustainability researchers and leaders with a crucial baseline for scientific advances in the sustainability field. It also offers practical guidelines for implementing a net zero­carbon campus, engaging users from various disciplines, which has important implications and contributions.


Subject(s)
COVID-19 , Sustainable Development , Humans , Universities , Pandemics , COVID-19/epidemiology , Exercise
2.
ACS Omega ; 7(19): 16306-16322, 2022 May 17.
Article in English | MEDLINE | ID: mdl-35601308

ABSTRACT

Biomass combustion equipment is often susceptible to ash deposition due to the relatively significant quantities of potassium, silicon, and other ash-forming elements in biomass. To evaluate the propensity for ash deposition resulting from biomass combustion, a biomass combustion model was integrated with a chemical equilibrium model to predict the fate and occurrence of ash-forming elements in a pilot-scale entrained-flow burner. The integrated model simulated the combustion of white wood (virgin wood) and recycled wood (treated wood) previously combusted in the burner. The key advantage of this model in comparison to a model with general equilibrium assumed is that it was able to consider the rate of release of trace and minor species with time, the local equilibrium in the particles, and separately, that in the continuum phase (which also included any solid or liquid materials nucleating). The simulation generated the fate and occurrence profiles of each ash-forming element along the burner. The qualitative comparisons between the modeled profiles and the previous experimental findings under similar operating conditions show reasonable agreement. The concentrations of ash-forming elements released from the burner were also compared with the experimental online inductively coupled plasma readings. However, the latter comparison shows overestimation using the modeled results and might suggest that further considerations of other parameters such as ash nucleation and coagulation are required. Nonetheless, based on the ongoing performance of the integrated model, future use of the model might be expanded to a broader range of problematic solid fuels such as herbaceous biomass or municipal solid waste.

3.
Waste Manag ; 134: 149-158, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34419702

ABSTRACT

With the increasing installation of weather-dependent renewable sources such as solar and wind power, the ability to produce electricity on demand to balance any shortfall in supply is becoming more important. Anaerobic digestion is a low-carbon energy source with the potential to be flexible to meet this need. An investigation was conducted into the response of two laboratory-scale anaerobic digesters at loading rate of 2.5 gVS L-1 day-1 over five months using a synthetic food waste as a substrate. One digester was consistently fed at the same rate, whereas the other digester was fed with periods of varying organic loading rate, from 0.1 to 7 gVS L-1 day-1, using a feed pattern derived from a record of restaurant food waste. The digester that had been fed at a variable rate showed a pronounced increase in biogas production after feed events and a 9.6% higher VS breakdown than the steady-feed digester (81% compared to 74%), with no effect on digester stability, volatile fatty acid concentration, overall biogas output or biogas quality. These findings support and encourage the use of variable-rate feeding to balance the electricity demand.


Subject(s)
Food , Refuse Disposal , Anaerobiosis , Biofuels , Bioreactors , Kinetics , Methane
4.
Heliyon ; 7(6): e07295, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34179539

ABSTRACT

Bioethanol has been considered as a more sustainable alternative for fossil fuels, and it has been used as a drop-in fuel mixture. In this paper, the autoxidation properties of real kerosene as well as single, binary and ternary surrogates with the presence of ethanol are investigated for the first time. A simplified python code is proposed to predict the pressure drop of the PetroOXY method that was used for assessing the fuel autoxidation properties. The experimental results show that the addition of an ethanol concentration reduces the induction period of real kerosene while increasing that of surrogate mixtures. Also, the maximum pressure during the PetroOXY test increases with the increase of ethanol concentration. The model is able to predict the induction period of ethanol accurately by employing an automated reaction mechanism generator. A strategy to increase the autoxidation stability of ethanol by adding 1 g/L antioxidant has been evaluated. The efficiency of the antioxidants for ethanol is in the following order: PY > Decalin > DTBP > Tetralin > BHT > MTBP > BHA > TBHQ > PG.

5.
Nanotechnology ; 31(22): 225401, 2020 May 29.
Article in English | MEDLINE | ID: mdl-32066126

ABSTRACT

Non-platinum group metal (non-PGM) catalysts for the oxygen reduction reaction (ORR) are set to reduce the cost of polymer electrolyte membrane fuel cells (PEFCs) by replacing platinum at the cathode. We previously developed unique nitrogen-doped carbon foams by template-free pyrolysis of alkoxide powders synthesized using a high temperature and high pressure solvothermal reaction. These were shown to be effective ORR electrocatalysts in alkaline media. Here, we present a new optimised synthesis protocol which is carried out at ambient temperature and pressure, enabling us to safely increase the batch size to 2 g, increase the yield by 60%, increase the specific surface area to 1866 m2 g-1, and control the nitrogen content (between 1.0 and 5.2 at%). These optimized nitrogen-doped carbon foams are then utilized as effective supports for Fe-N-C catalysts for the ORR in acid media, whilst multiphysics modelling is used to gain insight into the electrochemical performance. This work highlights the importance of the properties of the carbon support in the design of Pt-free electrocatalysts.

6.
Materials (Basel) ; 11(10)2018 Sep 25.
Article in English | MEDLINE | ID: mdl-30257441

ABSTRACT

Biomass energy with CO2 capture could achieve net negative emissions, vital for meeting carbon budgets and emission targets. However, biomass often has significant quantities of light metals/inorganics that cause issues for boiler operation and downstream processes; including deposition, corrosion, and solvent degradation. This study investigated the pilot-scale combustion of a typical biomass used for power generation (white wood) and assessed the variations in metal aerosol release compared to bituminous coal. Using inductively coupled plasma optical emission spectrometry, it was found that K aerosol levels were significantly greater for biomass than coal, on average 6.5 times, with peaks up to 10 times higher; deposition could thus be more problematic, although Na emissions were only 20% of those for coal. Transition metals were notably less prevalent in the biomass flue gas; with Fe and V release in particular much lower (3⁻4% of those for coal). Solvent degradation may therefore be less severe for biomass-generated flue gases. Furthermore, aerosol emissions of toxic/heavy metals (As/Cd/Hg) were absent from biomass combustion, with As/Cd also not detected in the coal flue gas. Negligible Cr aerosol concentrations were found for both. Overall, except for K, metal aerosol release from biomass combustion was considerably reduced compared to coal.

7.
Inorg Chem ; 56(13): 7566-7573, 2017 Jul 03.
Article in English | MEDLINE | ID: mdl-28613068

ABSTRACT

The estimation of the thermochemical radius is very important because most of the properties of the electrolyte solutions are, to some extent, linked to this property. Also, these thermochemical radii can be used to estimate lattice energies, which can be a very important parameter to be evaluated when assessing the possibility of synthesizing new inorganic materials. This study presents a formulation for estimating the thermochemical radii of complex ions. More specifically, these thermochemical radii are estimated using a weighted sum based on the radii of the contributing cations and anions. Also, the influence of the ionic charge on these thermochemical radii is assessed and discussed. Finally, the parameters obtained from the estimation of the thermochemical radii of complex cations are used to estimate cation volumes, and this estimation is then validated through comparison with literature values. As a result, the equations developed for thermochemical radii of complex ions produce predictions that are accurate to within 15% in general, whereas the equation developed to estimate cation volumes produces predictions that are accurate to within 20% considering cation volumes greater than 70 Å3.

8.
Bioprocess Biosyst Eng ; 39(6): 977-92, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26961220

ABSTRACT

Biochemical reactions occurring during anaerobic digestion have been modelled using reaction kinetic equations such as first-order, Contois and Monod which are then combined to form mechanistic models. This work considers models which include between one and three biochemical reactions to investigate if the choice of the reaction rate equation, complexity of the model structure as well as the inclusion of inhibition plays a key role in the ability of the model to describe the methane production from the semi-continuous anaerobic digestion of green waste (GW) and food waste (FW). A parameter estimation method was used to investigate the most important phenomena influencing the biogas production process. Experimental data were used to numerically estimate the model parameters and the quality of fit was quantified. Results obtained reveal that the model structure (i.e. number of reactions, inhibition) has a much stronger influence on the quality of fit compared with the choice of kinetic rate equations. In the case of GW there was only a marginal improvement when moving from a one to two reaction model, and none with inclusion of inhibition or three reactions. However, the behaviour of FW digestion was more complex and required either a two or three reaction model with inhibition functions for both ammonia and volatile fatty acids. Parameter values for the best fitting models are given for use by other authors.


Subject(s)
Food , Methane/metabolism , Models, Theoretical , Anaerobiosis , Kinetics , Uncertainty , Waste Products/analysis
9.
Astrobiology ; 14(3): 254-70, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24621309

ABSTRACT

In this paper, we discuss how prebiotic geo-electrochemical systems can be modeled as a fuel cell and how laboratory simulations of the origin of life in general can benefit from this systems-led approach. As a specific example, the components of what we have termed the "prebiotic fuel cell" (PFC) that operates at a putative Hadean hydrothermal vent are detailed, and we used electrochemical analysis techniques and proton exchange membrane (PEM) fuel cell components to test the properties of this PFC and other geo-electrochemical systems, the results of which are reported here. The modular nature of fuel cells makes them ideal for creating geo-electrochemical reactors with which to simulate hydrothermal systems on wet rocky planets and characterize the energetic properties of the seafloor/hydrothermal interface. That electrochemical techniques should be applied to simulating the origin of life follows from the recognition of the fuel cell-like properties of prebiotic chemical systems and the earliest metabolisms. Conducting this type of laboratory simulation of the emergence of bioenergetics will not only be informative in the context of the origin of life on Earth but may help in understanding whether life might emerge in similar environments on other worlds.


Subject(s)
Computer Simulation , Earth, Planet , Energy Metabolism , Extraterrestrial Environment , Origin of Life , Models, Theoretical , Planets
10.
Environ Sci Technol ; 46(19): 10805-11, 2012 Oct 02.
Article in English | MEDLINE | ID: mdl-22913288

ABSTRACT

Growing concern over emissions from increased airport operations has resulted in a need to assess the impact of aviation related activities on local air quality in and around airports, and to develop strategies to mitigate these effects. One such strategy being investigated is the use of alternative fuels in aircraft engines and auxiliary power units (APUs) as a means to diversify fuel supplies and reduce emissions. This paper summarizes the results of a study to characterize the emissions of an APU, a small gas turbine engine, burning conventional Jet A-1, a fully synthetic jet fuel, and other alternative fuels with varying compositions. Gas phase emissions were measured at the engine exit plane while PM emissions were recorded at the exit plane as well as 10 m downstream of the engine. Five percent reduction in NO(x) emissions and 5-10% reduction in CO emissions were observed for the alternative fuels. Significant reductions in PM emissions at the engine exit plane were achieved with the alternative fuels. However, as the exhaust plume expanded and cooled, organic species were found to condense on the PM. This increase in organic PM elevated the PM mass but had little impact on PM number.


Subject(s)
Aircraft , Particulate Matter , Vehicle Emissions , Air Pollutants , Carbon Monoxide/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...