Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Syst Biol ; 4: 18, 2010 Mar 03.
Article in English | MEDLINE | ID: mdl-20199667

ABSTRACT

BACKGROUND: Network motifs are small modules that show interesting functional and dynamic properties, and are believed to be the building blocks of complex cellular processes. However, the mechanistic details of such modules are often unknown: there is uncertainty about the motif architecture as well as the functional form and parameter values when converted to ordinary differential equations (ODEs). This translates into a number of candidate models being compatible with the system under study. A variety of statistical methods exist for ranking models including maximum likelihood-based and Bayesian methods. Our objective is to show how such methods can be applied in a typical systems biology setting. RESULTS: We focus on four commonly occurring network motif structures and show that it is possible to differentiate between them using simulated data and any of the model comparison methods tested. We expand one of the motifs, the feed forward (FF) motif, for several possible parameterizations and apply model selection on simulated data. We then use experimental data on three biosynthetic pathways in Escherichia coli to formally assess how current knowledge matches the time series available. Our analysis confirms two of them as FF motifs. Only an expanded set of FF motif parameterizations using time delays is able to fit the third pathway, indicating that the true mechanism might be more complex in this case. CONCLUSIONS: Maximum likelihood as well as Bayesian model comparison methods are suitable for selecting a plausible motif model among a set of candidate models. Our work shows that it is practical to apply model comparison to test ideas about underlying mechanisms of biological pathways in a formal and quantitative way.


Subject(s)
Systems Biology , Algorithms , Amino Acid Motifs , Arabinose , Bayes Theorem , Computational Biology , Computer Simulation , Escherichia coli/genetics , Flagella/metabolism , Galactose/metabolism , Likelihood Functions , Models, Genetic , Models, Statistical , Probability , Time Factors
2.
Article in English | MEDLINE | ID: mdl-18604288

ABSTRACT

Two-level gene regulatory networks consist of the transcription factors (TFs) in the top level and their regulated genes in the second level. The expression profiles of the regulated genes are the observed high-throughput data given by experiments such as microarrays. The activity profiles of the TFs are treated as hidden variables as well as the connectivity matrix that indicates the regulatory relationships of TFs with their regulated genes. Factor analysis (FA) as well as other methods, such as the network component algorithm, has been suggested for reconstructing gene regulatory networks and also for predicting TF activities. They have been applied to E. coli and yeast data with the assumption that these datasets consist of identical and independently distributed samples. Thus, the main drawback of these algorithms is that they ignore any time correlation existing within the TF profiles. In this paper, we extend previously studied FA algorithms to include time correlation within the transcription factors. At the same time, we consider connectivity matrices that are sparse in order to capture the existing sparsity present in gene regulatory networks. The TFs activity profiles obtained by this approach are significantly smoother than profiles from previous FA algorithms. The periodicities in profiles from yeast expression data become prominent in our reconstruction. Moreover, the strength of the correlation between time points is estimated and can be used to assess the suitability of the experimental time interval.

3.
BMC Bioinformatics ; 8: 61, 2007 Feb 23.
Article in English | MEDLINE | ID: mdl-17319944

ABSTRACT

BACKGROUND: Most existing algorithms for the inference of the structure of gene regulatory networks from gene expression data assume that the activity levels of transcription factors (TFs) are proportional to their mRNA levels. This assumption is invalid for most biological systems. However, one might be able to reconstruct unobserved activity profiles of TFs from the expression profiles of target genes. A simple model is a two-layer network with unobserved TF variables in the first layer and observed gene expression variables in the second layer. TFs are connected to regulated genes by weighted edges. The weights, known as factor loadings, indicate the strength and direction of regulation. Of particular interest are methods that produce sparse networks, networks with few edges, since it is known that most genes are regulated by only a small number of TFs, and most TFs regulate only a small number of genes. RESULTS: In this paper, we explore the performance of five factor analysis algorithms, Bayesian as well as classical, on problems with biological context using both simulated and real data. Factor analysis (FA) models are used in order to describe a larger number of observed variables by a smaller number of unobserved variables, the factors, whereby all correlation between observed variables is explained by common factors. Bayesian FA methods allow one to infer sparse networks by enforcing sparsity through priors. In contrast, in the classical FA, matrix rotation methods are used to enforce sparsity and thus to increase the interpretability of the inferred factor loadings matrix. However, we also show that Bayesian FA models that do not impose sparsity through the priors can still be used for the reconstruction of a gene regulatory network if applied in conjunction with matrix rotation methods. Finally, we show the added advantage of merging the information derived from all algorithms in order to obtain a combined result. CONCLUSION: Most of the algorithms tested are successful in reconstructing the connectivity structure as well as the TF profiles. Moreover, we demonstrate that if the underlying network is sparse it is still possible to reconstruct hidden activity profiles of TFs to some degree without prior connectivity information.


Subject(s)
Algorithms , Gene Expression Regulation/physiology , Models, Genetic , Oligonucleotide Array Sequence Analysis/methods , Signal Transduction/physiology , Transcription Factors/metabolism , Transcriptional Activation/physiology , Bayes Theorem , Computer Simulation , Factor Analysis, Statistical , Gene Expression Profiling/methods
4.
Bioinformatics ; 20(17): 2934-42, 2004 Nov 22.
Article in English | MEDLINE | ID: mdl-15180938

ABSTRACT

MOTIVATION: The analysis of high-throughput experimental data, for example from microarray experiments, is currently seen as a promising way of finding regulatory relationships between genes. Bayesian networks have been suggested for learning gene regulatory networks from observational data. Not all causal relationships can be inferred from correlation data alone. Often several equivalent but different directed graphs explain the data equally well. Intervention experiments where genes are manipulated can help to narrow down the range of possible networks. RESULTS: We describe an active learning algorithm that suggests an optimized sequence of intervention experiments. Simulation experiments show that our selection scheme is better than an unguided choice of interventions in learning the correct network and compares favorably in running time and results with methods based on value of information calculations.


Subject(s)
Algorithms , Artificial Intelligence , Gene Expression Regulation/physiology , Models, Biological , Neoplasm Proteins/metabolism , Neoplasms/physiopathology , Signal Transduction/physiology , Animals , Bayes Theorem , Computer Simulation , Gene Expression Profiling/methods , Humans , Models, Statistical
SELECTION OF CITATIONS
SEARCH DETAIL
...