Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmacol Res Perspect ; 10(1): e00909, 2022 02.
Article in English | MEDLINE | ID: mdl-34968008

ABSTRACT

The novel coronavirus disease 2019 (COVID-19) emerged in late December 2019 in china and has rapidly spread to many countries around the world. The effective pharmacotherapy can reduce the mortality of COVID-19. Antiviral medications are the candidate therapies for the management of COVID-19. Molnupiravir is an antiviral drug with anti-RNA polymerase activity and currently is under investigation for the treatment of patients with COVID-19. This review focuses on summarizing published literature for the mechanism of action, safety, efficacy, and clinical trials of molnupiravir in the treatment of COVID-19 patients.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Cytidine/analogs & derivatives , Hydroxylamines/therapeutic use , COVID-19/virology , Clinical Trials as Topic , Cytidine/therapeutic use , Drug Interactions , Humans , SARS-CoV-2/isolation & purification
2.
Pharmacol Res Perspect ; 9(1): e00705, 2021 02.
Article in English | MEDLINE | ID: mdl-33421347

ABSTRACT

Drug-drug interaction (DDI) is a common clinical problem that has occurred as a result of the concomitant use of multiple drugs. DDI may occur in patients under treatment with medications used for coronavirus disease 2019 (COVID-19; i.e., chloroquine, lopinavir/ritonavir, ribavirin, tocilizumab, and remdesivir) and increase the risk of serious adverse reactions such as QT-prolongation, retinopathy, increased risk of infection, and hepatotoxicity. This review focuses on summarizing DDIs for candidate medications used for COVID-19 in order to minimize the adverse reactions.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , SARS-CoV-2 , Animals , Antibodies, Monoclonal, Humanized/therapeutic use , Chloroquine/therapeutic use , Drug Interactions , Humans , Lopinavir/therapeutic use , Ribavirin/therapeutic use , Ritonavir/therapeutic use
3.
Iran J Pharm Res ; 18(2): 759-771, 2019.
Article in English | MEDLINE | ID: mdl-31531059

ABSTRACT

Tumor necrosis factor alpha (TNF-α) is an inflammatory cytokine which plays crucial roles in pathogenesis of inflammatory diseases. The current study aimed to investigate the binding abilities of I44 and I49 domain antibodies to TNF-α. The dAbs were expressed in bacterial expression system and purified by affinity chromatography using Ni-sepharose column. The expression and purity of the proteins were evaluated using western blotting and SDS-PAGE techniques, respectively. ELISA experiment showed that I44 and I49 dAbs bind to TNF-α with the binding constants (Kd) of 5.18 ± 1.41 and 2.42 ± 0.55 µM, respectively. The inhibitory effect of dAbs on TNF-α biological effect was determined in MTT assay in which I44 and I49 prevented TNF-α cell cytotoxicity with IC50 values of 6.61 and 3.64 µM, respectively. The identified anti-TNF-α dAbs could bind to and inhibit TNF-α activity. The dAbs activities can be attributed to their ability to establish hydrogen bonds as well as hydrophobic contacts with TNF-α. The results of the current study can pave the way for further structural studies in order to introduce new more potent anti-TNF-α antibodies.

4.
Prep Biochem Biotechnol ; 49(1): 38-47, 2019.
Article in English | MEDLINE | ID: mdl-30735094

ABSTRACT

Single-chain fragment variable (scFv) antibodies are antibody fragments consist of variable domains of full antibodies known to retain antigen binding properties while having much lower molecular weights granting some beneficial properties to them. In our previous study, three phage particles each displaying an individual scFv antibody (i.e. J43, J44, and J48) were identified as tumor necrosis factor alpha (TNF-α) binders. The current study aimed to produce previously identified anti-TNF-α scFv antibodies and to investigate their abilities to bind and inhibit TNF-α biological effect. The estimated free energy of folding determined using spectrofluorimetry method for the prepared scFv proteins was in the range of 6.35-12.45 kJ mol-1 indicating their proper folding in the solution. In ELISA experiment, the produced scFvs showed an appropriate affinity towards TNF-α with Kd values in the range of 0.5-2.18 µM. They also inhibited the TNF-α-induced cytotoxicity on L929 cells with sub-micromolar IC50 values (0.12 and 0.73 µM for J44 and J48, respectively). Molecular docking studies showed that J44 could mimic adalimumab interactions with TNF-α, confirming its relatively high TNF-α inhibitory effect compared to J43 and J48. It seems that the findings in the current study can be useful for designing more potent anti-TNF-α antibodies.


Subject(s)
Computer Simulation , Single-Chain Antibodies/immunology , Tumor Necrosis Factor-alpha/immunology , Animals , Blotting, Western , Cell Line , Cell Survival/drug effects , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Inhibitory Concentration 50 , Mice , Molecular Docking Simulation , Mutagenesis, Site-Directed , Polymerase Chain Reaction , Spectrometry, Fluorescence , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...