Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Water Res ; 256: 121618, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38663208

ABSTRACT

The potential of nitrate electro-bioremediation has been fully demonstrated at the laboratory scale, although it has not yet been fully implemented due to the challenges associated with scaling-up bioelectrochemical reactors and their on-site operation. This study describes the initial start-up and subsequent stable operation of an electro-bioremediation pilot plant for the treatment of nitrate-contaminated groundwater on-site (Navata site, Spain). The pilot plant was operated under continuous flow mode for 3 months, producing an effluent suitable for drinking water in terms of nitrates and nitrites (<50 mg NO3- L-1; 0 mg NO2- L-1). A maximum nitrate removal rate of 0.9 ± 0.1 kg NO3- m-3 d-1 (efficiency 82 ± 18 %) was achieved at a cathodic hydraulic retention time (HRTcat) of 2.0 h with a competitive energy consumption of 4.3 ± 0.4 kWh kg-1 NO3-. Under these conditions, the techno-economic analysis estimated an operational cost of 0.40 € m-3. Simultaneously, microbiological analyses revealed structural heterogeneity in the reactor, with denitrification functionality concentrated predominantly from the centre to the upper section of the reactor. The most abundant groups were Pseudomonadaceae, Rhizobiaceae, Gallionellaceae, and Xanthomonadaceae. In conclusion, this pilot plant represents a significant advancement in implementing this technology on a larger scale, validating its effectiveness in terms of nitrate removal and cost-effectiveness. Moreover, the results validate the electro-bioremediation in a real environment and encourage further investigation of its potential as a water treatment.


Subject(s)
Biodegradation, Environmental , Groundwater , Nitrates , Water Pollutants, Chemical , Water Purification , Groundwater/chemistry , Nitrates/metabolism , Pilot Projects , Water Purification/methods , Denitrification , Spain , Bioreactors
2.
Chemosphere ; 352: 141370, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38316275

ABSTRACT

Nitrate-contaminated groundwater is a pressing issue in rural areas, where up to 40 % of the population lacks access to safely managed drinking water services. The high costs and complexity of centralised treatment in these regions exacerbate this problem. To address this challenge, the present study proposes electro-bioremediation as a more accessible decentralised alternative. Specifically, the main focus of this study is developing and evaluating a compact reactor designed to accomplish simultaneous nitrate removal and groundwater disinfection. Significantly, this study has established a new benchmark for nitrate reduction rate within bioelectrochemical reactors, achieving the maximum reported rate of 5.0 ± 0.3 kg NO3- m-3NCC d-1 at an HRTcat of 0.7 h. Furthermore, thein-situ generation of free chlorine was effective for water disinfection, resulting in a residual concentration of up to 4.4 ± 1.1 mg Cl2 L-1 in the effluent at the same HRTcat of 0.7 h. These achievements enabled the treated water to meet the drinking water standards for nitrogen compounds (nitrate, nitrite, and nitrous oxide) as well as pathogens content (T. coliforms, E. coli, and Enterococcus). In conclusion, this study demonstrates the potential of the electro-bioremediation of nitrate-contaminated groundwater as a decentralised water treatment system in rural areas with a competitive operational cost of 1.05 ± 0.16 € m-3.


Subject(s)
Drinking Water , Groundwater , Water Pollutants, Chemical , Nitrates/chemistry , Biodegradation, Environmental , Escherichia coli , Disinfection , Water Pollutants, Chemical/analysis , Groundwater/chemistry
3.
Biotechnol Bioeng ; 121(1): 250-265, 2024 01.
Article in English | MEDLINE | ID: mdl-37881108

ABSTRACT

The performance of combined reduction of nitrate (NO3 - ) to dinitrogen gas (N2 ) and oxidation of arsenite (As[III]) to arsenate (As[V]) by a bioelectrochemical system was assessed, supported by ecotoxicity characterization. For the comprehensive toxicity characterization of the untreated model groundwater and the treated reactor effluents, a problem-specific ecotoxicity test battery was established. The performance of the applied technology in terms of toxicity and target pollutant elimination was compared and analyzed. The highest toxicity attenuation was achieved under continuous flow mode with hydraulic retention time (HRT) = 7.5 h, with 95%, nitrate removal rate and complete oxidation of arsenite to arsenate. Daphnia magna proved to be the most sensitive test organism. The results of the D. magna lethality test supported the choice of the ideal operational conditions based on chemical data analysis. The outcomes of the study demonstrated that the applied technology was able to improve the groundwater quality in terms of both chemical and ecotoxicological characteristics. The importance of ecotoxicity evaluation was also highlighted, given that significant target contaminant elimination did not necessarily lower the environmental impact of the initial, untreated medium, in addition, anomalies might occur during the technology operational process which in some instances, could result in elevated toxicity levels.


Subject(s)
Arsenites , Groundwater , Water Pollutants, Chemical , Arsenates/analysis , Nitrates/toxicity , Biodegradation, Environmental , Arsenites/toxicity , Arsenites/analysis , Arsenites/chemistry , Groundwater/chemistry , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis
4.
Environ Sci Ecotechnol ; 15: 100253, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36896143

ABSTRACT

It has been recently suggested that Alcaligenes use a previously unknown pathway to convert ammonium into dinitrogen gas (Dirammox) via hydroxylamine (NH2OH). This fact alone already implies a significant decrease in the aeration requirements for the process, but the process would still be dependent on external aeration. This work studied the potential use of a polarised electrode as an electron acceptor for ammonium oxidation using the recently described Alcaligenes strain HO-1 as a model heterotrophic nitrifier. Results indicated that Alcaligenes strain HO-1 requires aeration for metabolism, a requirement that cannot be replaced for a polarised electrode alone. However, concomitant elimination of succinate and ammonium was observed when operating a previously grown Alcaligenes strain HO-1 culture in the presence of a polarised electrode and without aeration. The usage of a polarised electrode together with aeration did not increase the succinate nor the nitrogen removal rates observed with aeration alone. However, current density generation was observed along a feeding batch test representing an electron share of 3% of the ammonium removed in the presence of aeration and 16% without aeration. Additional tests suggested that hydroxylamine oxidation to dinitrogen gas could have a relevant role in the electron discharge onto the anode. Therefore, the presence of a polarised electrode supported the metabolic functions of Alcaligenes strain HO-1 on the simultaneous oxidation of succinate and ammonium.

5.
Sci Total Environ ; 845: 157236, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35810909

ABSTRACT

Bioelectrochemical systems (BES) have proven their capability to treat nitrate-contaminated saline groundwater and simultaneously recover value-added chemicals (such as disinfection products) within a circular economy-based approach. In this study, the effect of the hydraulic retention time (HRT) on nitrate and salinity removal, as well as on free chlorine production, was investigated in a 3-compartment BES working in galvanostatic mode with the perspective of process intensification and future scale-up. Reducing the HRT from 30.1 ± 2.3 to 2.4 ± 0.2 h led to a corresponding increase in nitrate removal rates (from 17 ± 1 up to 131 ± 1 mgNO3--N L-1d-1), although a progressive decrease in desalination efficiency (from 77 ± 13 to 12 ± 2 %) was observed. Nitrate concentration and salinity close to threshold limits indicated by the World Health Organization for drinking water, as well as significant chlorine production were achieved with an HRT of 4.9 ± 0.4 h. At such HRT, specific energy consumption was low (6.8·10-2 ± 0.3·10-2 kWh g-1NO3--Nremoved), considering that the supplied energy supports three processes simultaneously. A logarithmic equation correlated well with nitrate removal rates at the applied HRTs and may be used to predict BES behaviour with different HRTs. The bacterial community of the bio-cathode under galvanostatic mode was dominated by a few populations, including the genera Rhizobium, Bosea, Fontibacter and Gordonia. The results provide useful information for the scale-up of BES treating multi-contaminated groundwater.


Subject(s)
Groundwater , Water Pollutants, Chemical , Biodegradation, Environmental , Bioreactors/microbiology , Chlorine , Denitrification , Groundwater/microbiology , Nitrates/analysis , Nitrogen Oxides , Water Pollutants, Chemical/analysis
6.
Front Microbiol ; 13: 869474, 2022.
Article in English | MEDLINE | ID: mdl-35711746

ABSTRACT

Electrified biotrickling filters represent sustainable microbial electrochemical technology for treating organic carbon-deficient ammonium-contaminated waters. However, information on the microbiome of the conductive granule bed cathode remains inexistent. For uncovering this black box and for identifying key process parameters, minimally invasive sampling units were introduced, allowing for the extraction of granules from different reactor layers during reactor operation. Sampled granules were analyzed using cyclic voltammetry and molecular biological tools. Two main redox sites [-288 ± 18 mV and -206 ± 21 mV vs. standard hydrogen electrode (SHE)] related to bioelectrochemical denitrification were identified, exhibiting high activity in a broad pH range (pH 6-10). A genome-centric analysis revealed a complex nitrogen food web and the presence of typical denitrifiers like Pseudomonas nitroreducens and Paracoccus versutus with none of these species being identified as electroactive microorganism so far. These are the first results to provide insights into microbial structure-function relationships within electrified biotrickling filters and underline the robustness and application potential of bioelectrochemical denitrification for environmental remediation.

7.
Sci Total Environ ; 806(Pt 1): 150433, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34560446

ABSTRACT

Electro bioremediation is gaining interest as a sustainable treatment for contaminated groundwater. Nevertheless, the investigation is still at the laboratory level, and before their implementation is necessary to overcome important drawbacks. A prevalent issue is the high groundwater hardness that generates scale deposition on electrodes that irreversibly affects the treatment effectiveness and their lifetime. For this reason, the present study evaluated a novel and sustainable approach combining electrochemical water softening as a preliminary step for electro bioremediation of nitrate-contaminated groundwater. Batch mode tests were performed at mL-scale to determine the optimum reactor configuration (single- or two-chambers) and the suitable applied cathode potential for electrochemical softening. A single-chamber reactor working at a cathode potential of -1.2 V vs. Ag/AgCl was chosen. Continuous groundwater softening under this configuration achieved a hardness removal efficiency of 64 ± 4% at a rate of 305 ± 17 mg CaCO3 m-2cathode h-1. The saturation index at the effluent of the main minerals susceptible to precipitate (aragonite, calcite, and brucite) was reduced up to 90%. Softening activity plummeted after 13 days of operation due to precipitate deposition (mostly calcite) on the cathode surface. Polarity reversal periods were considered to detach the precipitated throughout the continuous operation. Their implementation every 3-4 days increased the softening lifetime by 48%, keeping a stable hardness removal efficiency. The nitrate content of softened groundwater was removed in an electro bioremediation system at a rate of 1269 ± 30 g NO3- m-3NCC d-1 (97% nitrate removal efficiency). The energy consumption of the integrated system (1.4 kWh m-3treated) confirmed the competitiveness of the combined treatment and paves the ground for scaling up the process.


Subject(s)
Groundwater , Water Pollutants, Chemical , Biodegradation, Environmental , Nitrates/analysis , Water Pollutants, Chemical/analysis , Water Softening
8.
Water Res ; 206: 117736, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34656821

ABSTRACT

Groundwater pollution and salinization have increased steadily over the years. As the balance between water demand and availability has reached a critical level in many world regions, a sustainable approach for the management (including recovery) of saline water resources has become essential. A 3-compartment cell configuration was tested for a new application based on the simultaneous denitrification and desalination of nitrate-contaminated saline groundwater and the recovery of value-added chemicals. The cells were initially operated in potentiostatic mode to promote autotrophic denitrification at the bio-cathode, and then switched to galvanostatic mode to improve the desalination of groundwater in the central compartment. The average nitrate removal rate achieved was 39±1 mgNO3--N L-1 d-1, and no intermediates (i.e., nitrite and nitrous oxide) were observed in the effluent. Groundwater salinity was considerably reduced (average chloride removal was 63±5%). Within a circular economy approach, part of the removed chloride was recovered in the anodic compartment and converted into chlorine, which reached a concentration of 26.8±3.4 mgCl2 L-1. The accumulated chlorine represents a value-added product, which could also be dosed for disinfection in water treatment plants. With this cell configuration, WHO and European legislation threshold limits for nitrate (11.3 mgNO3--N L-1) and salinity (2.5 mS cm-1) in drinking water were met, with low specific power consumptions (0.13±0.01 kWh g-1NO3--Nremoved). These results are promising and pave the ground for successfully developing a sustainable technology to tackle an urgent environmental issue.


Subject(s)
Groundwater , Water Pollutants, Chemical , Biodegradation, Environmental , Chlorides , Chlorine , Denitrification , Nitrates/analysis , Water Pollutants, Chemical/analysis
9.
Water Res ; 190: 116748, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33360100

ABSTRACT

The coexistence of different pollutants in groundwater is a common threat. Sustainable and resilient technologies are required for their treatment. The present study aims to evaluate microbial electrochemical technologies (METs) for treating groundwater contaminated with nitrate (NO3-) while containing arsenic (in form of arsenite (As(III)) as a co-contaminant. The treatment was based on the combination of nitrate reduction to dinitrogen gas and arsenite oxidation to arsenate (exhibiting less toxicity, solubility, and mobility), which can be removed more easily in further post-treatment. We operated a bioelectrochemical reactor at continuous-flow mode with synthetic contaminated groundwater (33 mg N-NO3- L-1 and 5 mg As(III) L-1) identifying the key operational conditions. Different hydraulic retention times (HRT) were evaluated, reaching a maximum nitrate reduction rate of 519 g N-NO3- m3Net Cathodic Compartment d-1 at HRT of 2.3 h with a cathodic coulombic efficiency of around 100 %. Simultaneously, arsenic oxidation was complete at all HRT tested down to 1.6 h reaching an oxidation rate of up to 90 g As(III) m-3Net Reactor Volume d -1. Electrochemical and microbiological characterization of single granules suggested that arsenite at 5 mg L-1 did not have an inhibitory effect on a denitrifying biocathode mainly represented by Sideroxydans sp. Although the coexistence of abiotic and biotic arsenic oxidation pathways was shown to be likely, microbial arsenite oxidation linked to denitrification by Achromobacter sp. was the most probable pathway. This research paves the ground towards a real application for treating groundwater with widespread pollutants.


Subject(s)
Arsenic , Arsenites , Groundwater , Water Pollutants, Chemical , Biodegradation, Environmental , Nitrates/analysis , Oxidation-Reduction , Water Pollutants, Chemical/analysis
10.
Bioresour Technol ; 319: 124221, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33254451

ABSTRACT

This work aimed to study the electrification of biotrickling filters by means of Microbial electrochemical technologies (MET) to develop an easy-to-assemble and easy-to-use MET for nitrogen removal without external aeration nor addition of chemicals. Four different designs were tested. The highest ammonium and nitrate removal rates (94 gN·m-3·d-1 and 43 gN·m-3·d-1, respectively) were reached by combining an aerobic zone with an electrified anoxic zone. The standards of effluent quality suitable for hydroponics were met at low energy cost (8.3 × 10-2 kWh·gN-1). Electrified biotrickling filters are a promising alternative for aquaponics and a potential treatment for organic carbon-deficient ammonium-contaminated waters.


Subject(s)
Nitrogen , Wastewater , Bioreactors , Hydroponics , Nitrates , Water Pollution
11.
J Environ Manage ; 278(Pt 1): 111538, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33113392

ABSTRACT

Nature-based wastewater treatments are an economic and sustainable alternative to intensive technologies in rural areas, although their efficiency needs to be improved. This study explores technological co-operation between zooplankton (e.g., Daphnia magna) and bacterial and algal biofilms in a 1.5 m3 zooplankton-based reactor for the on-site treatment of secondary urban wastewater. The efficiency of the reactor was evaluated over a 14-month period without any maintenance. The results suggest a low seasonality effect on nutrient polishing (organic matter and nitrogen) and the removal of solids (TSS and turbidity). The best performance, involving a decrease in organic carbon, nitrogen, E. coli loads, and solid content was achieved in winter when operating the reactor at 750 L d-1. Under these conditions, the quality of the effluent water was suitable for its reuse for six different purposes in conformance with Spanish legislation. These results demonstrate that the zooplankton-based reactor presented here can be used as an eco-sustainable tertiary treatment to provide water suitable for reuse. On-site research revealed that the robustness of the reactor against temperature and oxygen fluctuations needs to be improved to ensure good performance throughout the year.


Subject(s)
Wastewater , Zooplankton , Animals , Biofilms , Bioreactors , Escherichia coli , Nitrogen , Waste Disposal, Fluid , Weights and Measures
12.
Environ Pollut ; 267: 115439, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32892007

ABSTRACT

Daphnids, including the water flea Daphnia magna, can be exploited for wastewater treatment purposes, given that they are filter feeder organisms that are able to remove suspended particles from water. The presence of pollutants, such as microplastics and chemicals, might be considered stressors and modify the behaviour and survival of D. magna individuals. The impact of the cumulative pollutants that regulate the fate of living organisms has yet to be fully determined. Here we present the effect of double and triple combinations of stressors on the behaviour of D. magna. The impact of water temperature, ammonium and polystyrene microplastics on the filtration capacity and survival of D. magna is studied. Water temperatures of 15 °C, 20 °C and 25 °C, microplastic-to-food ratios of 25% and 75%, and ammonium concentrations of 10 and 30 mg N-NH4+ L-1 are tested after making dual and triple combinations of the parameters. A synergistic effect between water temperature and ammonium is normally observed but not in the case of the lower values of ammonium concentration and temperature. The combination of three stressors (water temperature, microplastics and ammonium) is also found to be synergistic, producing the greatest impact on D. magna filtration capacity and reducing their survival. In comparison with the effect of the two stressor conditions, the combination of the three stressors caused a reduction of between 13.1% and 91.7% in the t50% time (the time required for a 50% reduction in the D. magna filtration capacity) and a reduction of between 4.8% and 54.5% in TD50 (the time for 50% mortality).


Subject(s)
Ammonium Compounds , Water Pollutants, Chemical , Animals , Daphnia , Humans , Microplastics , Plastics/toxicity , Temperature , Water , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
13.
Chemosphere ; 238: 124683, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31524620

ABSTRACT

The combination of the filtration capacity of zooplankton (e.g. Daphnia) with the nutrient removal capacity of bacterial/algal biofilm in a zooplankton-containing reactor could provide a natural-based alternative for wastewater treatment. A laboratory-scale zooplankton-based reactor was tested at different HRTs resulting in a significant reduction in nutrient concentrations in wastewater when the system was operated at HRTs longer than 1.1 days (preferably of between 2 and 4 days). However, the presence of high concentrations of organic matter (>250 mg COD L-1) in the wastewater inhibited zooplankton activity, limiting its use to tertiary treatment. Therefore, in combination with other natural treatments that can perform primary and secondary treatments, zooplankton may provide a solution for wastewater clarification and nutrient polishing. The effect of a common metal such as copper on the filtration capacity of Daphnia was also evaluated. Daphnia, as well as the whole zooplankton-based reactor, adapted to copper concentrations of up to 70 µg Cu L-1 but an overload of 380 µg Cu L-1 for two-weeks severely affected the biological system.


Subject(s)
Bacteria/metabolism , Bioreactors , Daphnia/metabolism , Wastewater/chemistry , Zooplankton/metabolism , Animals , Biofilms/growth & development , Copper/analysis , Filtration/methods , Humic Substances/analysis
14.
Sci Total Environ ; 686: 151-157, 2019 Oct 10.
Article in English | MEDLINE | ID: mdl-31176814

ABSTRACT

Daphnia populations are present in lakes and ponds. They are known to experience diurnal vertical migrations according to their feeding needs. During the day they migrate downwards to avoid predation in light-receiving layers and at night they migrate upwards, searching for food in the shallow productive layers. The light photoperiod and light intensity vary depending on the latitude and, therefore, the precise location of lakes and ponds will be an additional and crucial parameter in determining the development of Daphnia. Here we will focus on a population of Daphnia magna (a genus of the Cladocera order). The effect of both light intensity and photoperiod on Daphnia filtration was studied in laboratory experiments. An increase in the light intensity resulted in two D. magna responses depending on the exposure time of individuals to light. Short time exposures to a decrease in the light intensity of less than one day produced an increase in the D. magna filtration. However, exposures of longer than one day resulted in a decrease in the D. magna filtration along with a decrease in the light intensity. Photoperiod exposures of 8, 12 and 16 h produced greater D. magna filtrations than photoperiods of 0, 4 and 24 h. In this study, regulation of the light intensity and the period of exposure were used in laboratory experiments to establish D. magna development thresholds by latitudinal variation in the photoperiod.


Subject(s)
Daphnia/physiology , Photoperiod , Animals , Filtration , Light
15.
Sci Total Environ ; 656: 331-337, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30513424

ABSTRACT

Biological methods are a promising approach to treating wastewater in order to produce water of an appropriate quality for sub-potable water purposes, thus reducing pressure on potable water sources. Daphnia magna are organisms that filter on small suspended particles and bacteria and so may be able to clarify and disinfect wastewater. However, Daphnia magna are sensitive to common chemicals and might be vulnerable to the quality of the wastewater. This study analyses the filtration, mobility and mortality rates of Daphnia magna exposed to seven days of changing concentrations of ammonium, nitrite, nitrate and phosphate. Inactivation increased with the time of exposure for both nitrite and ammonium, with a 50% inactivation in Daphnia magna filtrations after 7 days of exposure at nitrite concentrations above 6 ppm and ammonium concentrations above 40 ppm. The Daphnia filtration remained unaltered in the nitrate and phosphate concentrations. Mortality increased with nitrite and ammonium concentrations, but not with phosphate or nitrate. The swimming velocity of Daphnia magna individuals decreased when both nitrite and ammonium concentrations increased and also with phosphate concentrations above 30 ppm. However, Daphnia magna swimming velocities remained unaltered in the presence of nitrate concentrations below 100 ppm.


Subject(s)
Daphnia/drug effects , Wastewater/toxicity , Water Pollutants, Chemical/toxicity , Ammonium Compounds/toxicity , Animals , Daphnia/physiology , Feeding Behavior/drug effects , Longevity/drug effects , Nitrates/toxicity , Nitrites/toxicity , Phosphates/toxicity , Swimming
17.
Bioresour Technol ; 255: 331-339, 2018 May.
Article in English | MEDLINE | ID: mdl-29439851

ABSTRACT

Fresh water is a fundamental source for humans, hence the recent shrinkage in freshwater and increase in water pollution are imperative problems that vigorously affect the people and the environment worldwide. The breakneck industrialization contributes to the procreation of substantial abundance of wastewater and its treatment becomes highly indispensable. Perchlorate and nitrate containing wastewaters poses a serious threat to human health and environment. Conventional biological treatment methods are expensive and also not effective for treating wastewater effectively and incapable of in situ bioremediation. Bioelectrochemical systems are emerging as a new technology platform for a sustainable removal of such contaminants from wastewater streams. This article reviews the state of art of bioelectroremediation of contaminated waters with perchlorate and nitrate. Different aspects of this technology such as configuration and design, mode of operation and type of substrate are considered in detail.


Subject(s)
Perchlorates , Water Pollutants, Chemical , Water Purification , Biodegradation, Environmental , Humans , Nitrates , Water
18.
Microb Biotechnol ; 11(1): 119-135, 2018 01.
Article in English | MEDLINE | ID: mdl-28984425

ABSTRACT

Groundwater pollution is a serious worldwide concern. Aromatic compounds, chlorinated hydrocarbons, metals and nutrients among others can be widely found in different aquifers all over the world. However, there is a lack of sustainable technologies able to treat these kinds of compounds. Microbial electro-remediation, by the means of microbial electrochemical technologies (MET), can become a promising alternative in the near future. MET can be applied for groundwater treatment in situ or ex situ, as well as for monitoring the chemical state or the microbiological activity. This document reviews the current knowledge achieved on microbial electro-remediation of groundwater and its applications.


Subject(s)
Biodegradation, Environmental , Electrochemical Techniques/methods , Groundwater/chemistry , Water Pollutants, Chemical/metabolism , Water Purification/methods , Biotransformation , Electrolysis
19.
Bioresour Technol ; 243: 949-956, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28738550

ABSTRACT

The feasibility of employing Microbial Electrochemical Technology (MET)-driven electro-Fenton oxidation was evaluated as a post-treatment of an anammox system treating sanitary landfill leachate. Two different MET configuration systems were operated using effluent from partial nitrification-anammox reactor treating mature leachate. In spite of the low organic matter biodegradability of the anammox's effluent (2401±562mgCODL-1; 237±57mgBOD5L-1), the technology was capable to reach COD removal rates of 1077-1244mgL-1d-1 with concomitant renewable electricity production (43.5±2.1Am-3NCC). The operation in continuous mode versus batch mode reinforced the removal capacity of the technology. The recirculation of acidic catholyte into anode chamber hindered the anodic efficiency due to pH stress on anodic electricigens. The obtained results demonstrated that the integrated system is a potentially applicable process to deal with bio-recalcitrant compounds present in mature landfill leachate.


Subject(s)
Refuse Disposal , Waste Disposal, Fluid , Water Pollutants, Chemical , Electrochemistry , Hydrogen Peroxide , Nitrification , Oxidation-Reduction
20.
Biosens Bioelectron ; 75: 352-8, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26339932

ABSTRACT

Up to date a few electroactive bacteria embedded in biofilms are described to catalyze both anodic and cathodic reactions in bioelectrochemical systems (i.e. bidirectional electron transfer). How these bacteria transfer electrons to or from the electrode is still uncertain. In this study the extracellular electron transfer mechanism of bacteria within an electroactive biofilm was investigated by using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). First, a mature anodic electroactive biofilm was developed from an activated sludge sample (inoculum), acetate as electron donor and a poised electrode (+397mV vs. SHE). Later, this biofilm was "switched" to biocathodic conditions by feeding it with a medium containing nitrates and poising the electrode at -303mV vs. SHE. The electrochemical characterization indicated that both, acetate oxidation and nitrate reduction took place at a similar formal potential of -175±05 and -175±34mV vs. SHE, respectively. The biofilm was predominantly composed by Geobacter sp. at both experimental conditions. Taken together, the results indicated that both processes could be catalyzed by using the same electron conduit, and most likely by the same bacterial consortium. Hence, this study suggests that electroactive bacteria within biofilms could use the same electron transfer conduit for catalyzing anodic and cathodic reactions.


Subject(s)
Biofilms , Biosensing Techniques/methods , Geobacter/chemistry , Acetates/chemistry , Cell Respiration , Electrodes , Electrons , Nitrates/chemistry , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...