Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Int ; 158: 106914, 2022 01.
Article in English | MEDLINE | ID: mdl-34649051

ABSTRACT

Studies suggest that exposure to potential endocrine disrupting chemicals (pEDCs) may contribute to adverse health outcomes, but pEDC exposures among firefighters have not been fully characterized. Previously, we demonstrated the military-style silicone dog tag as a personal passive sampling device for assessing polycyclic aromatic hydrocarbon exposures among structural firefighters. This follow-up analysis examined the pEDC exposures based on department call volume, duty shift, and questionnaire variables. Structural firefighters (n = 56) were from one high and one low fire call volume department (Kansas City, MO metropolitan area) and wore separate dog tags while on- and off-duty (ndogtags = 110). The targeted 1530 analyte semi-quantitative screening method was conducted using gas chromatography mass spectrometry (npEDCs = 433). A total of 47 pEDCs were detected, and several less-frequently-detected pEDCs (<75%) were more commonly detected in off- compared to on-duty dog tags (conditional logistic regression). Of the 11 phthalates and fragrances detected most frequently (>75%), off-duty pEDC concentrations were strongly correlated (r = 0.31-0.82, p < 0.05), suggesting co-applications of phthalates and fragrances in consumer products. Questionnaire variables of "regular use of conventional cleaning products" and "fireplace in the home" were associated with select elevated pEDC concentrations by duty shift (paired t-test). This suggested researchers should include detailed questions about consumer product use and home environment when examining personal pEDC exposures.


Subject(s)
Endocrine Disruptors , Firefighters , Military Personnel , Occupational Exposure , Polycyclic Aromatic Hydrocarbons , Animals , Dogs , Endocrine Disruptors/toxicity , Home Environment , Humans , Occupational Exposure/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Silicones
2.
Environ Int ; 142: 105818, 2020 09.
Article in English | MEDLINE | ID: mdl-32521346

ABSTRACT

Occupational chemical hazards in the fire service are hypothesized to play a role in increased cancer risk, and reliable sampling technologies are necessary for conducting firefighter chemical exposure assessments. This study presents the military-style dog tag as a new configuration of silicone passive sampling device to sample individual firefighters' exposures at one high and one low fire call volume department in the Kansas City, Missouri metropolitan area. The recruited firefighters (n = 56) wore separate dog tags to assess on- and off-duty exposures (ndogtags = 110), for a total of 30 24 h shifts. Using a 63 PAH method (GC-MS/MS), the tags detected 45 unique PAHs, of which 18 have not been previously reported as firefighting exposures. PAH concentrations were higher for on- compared to off-duty tags (0.25 < Cohen's d ≤ 0.80) and for the high compared to the low fire call volume department (0.25 ≤ d < 0.70). Using a 1530 analyte screening method (GC-MS), di-n-butyl phthalate, diisobutyl phthalate, guaiacol, and DEET were commonly detected analytes. The number of fire attacks a firefighter participated in was more strongly correlated with PAH concentrations than firefighter rank or years in the fire service. This suggested that quantitative data should be employed for firefighter exposure assessments, rather than surrogate measures. Because several detected analytes are listed as possible carcinogens, future firefighter exposure studies should consider evaluating complex mixtures to assess individual health risks.


Subject(s)
Air Pollutants, Occupational , Firefighters , Military Personnel , Occupational Exposure , Polycyclic Aromatic Hydrocarbons , Animals , Dogs , Humans , Missouri , Occupational Exposure/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Silicones , Tandem Mass Spectrometry
3.
Environ Sci Technol ; 53(15): 9203-9213, 2019 Aug 06.
Article in English | MEDLINE | ID: mdl-31290326

ABSTRACT

Feline hyperthyroidism is the most commonly diagnosed endocrine-related disease among senior and geriatric housecats, but the causes remain unknown. Exposure to endocrine-disrupting compounds with thyroid targets, such as flame retardants (FRs), may contribute to disease development. Silicone passive sampling devices, or pet tags, quantitatively assessed the bioavailable FR exposures of 78 cats (≥7 y) in New York and Oregon using gas chromatography-mass spectrometry. Pet tags were analyzed for 36 polybrominated diphenyl ethers, six organophosphate esters (OPEs), and two alternative brominated FRs. In nonhyperthyroid cats, serum free thyroxine (fT4), total T4 (TT4), total triiodothyronine, and thyroid-stimulating hormone concentrations were compared with FR concentrations. Tris(1,3-dichloro-2-isopropyl) phosphate (TDCIPP) concentrations were higher in hyperthyroid pet tags in comparison to nonhyperthyroid pet tags (adjusted odds ratio, p < 0.07; Mantel-Cox, p < 0.02). Higher TDCIPP concentrations were associated with air freshener use in comparison to no use (p < 0.01), residences built since 2005 compared to those pre-1989 (p < 0.002), and cats preferring to spend time on upholstered furniture in comparison to no preference (p < 0.05). Higher TDCIPP concentrations were associated with higher fT4 and TT4 concentrations (p < 0.05). This study provides proof-of-concept data for the use of silicone pet tags with companion animals and further indicates that bioavailable TDCIPP exposures are associated with feline hyperthyroidism.


Subject(s)
Flame Retardants , Hyperthyroidism , Animals , Cats , Halogenated Diphenyl Ethers , New York , Oregon , Organophosphates , Phosphates , Silicones
4.
R Soc Open Sci ; 6(2): 181836, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30891293

ABSTRACT

To assess differences and trends in personal chemical exposure, volunteers from 14 communities in Africa (Senegal, South Africa), North America (United States (U.S.)) and South America (Peru) wore 262 silicone wristbands. We analysed wristband extracts for 1530 unique chemicals, resulting in 400 860 chemical data points. The number of chemical detections ranged from 4 to 43 per wristband, with 191 different chemicals detected, and 1339 chemicals were not detected in any wristband. No two wristbands had identical chemical detections. We detected 13 potential endocrine disrupting chemicals in over 50% of all wristbands and found 36 chemicals in common between chemicals detected in three geographical wristband groups (Africa, North America and South America). U.S. children (less than or equal to 11 years) had the highest percentage of flame retardant detections compared with all other participants. Wristbands worn in Texas post-Hurricane Harvey had the highest mean number of chemical detections (28) compared with other study locations (10-25). Consumer product-related chemicals and phthalates were a high percentage of chemical detections across all study locations (36-53% and 18-42%, respectively). Chemical exposures varied among individuals; however, many individuals were exposed to similar chemical mixtures. Our exploratory investigation uncovered personal chemical exposure trends that can help prioritize certain mixtures and chemical classes for future studies.

5.
Sci Total Environ ; 652: 1022-1029, 2019 Feb 20.
Article in English | MEDLINE | ID: mdl-30380470

ABSTRACT

Personal exposure to pesticides has not been well characterized, especially among adolescents. We used silicone wristbands to assess pesticide exposure in 14 to 16 year old Latina girls (N = 97) living in the agricultural Salinas Valley, California, USA and enrolled in the COSECHA (CHAMACOS of Salinas Examining Chemicals in Homes and Agriculture) Study, a youth participatory action study in an agricultural region of California. We determined pesticide concentrations (ng/g/day) in silicone wristbands worn for one week using gas chromatography electron capture detection and employed gas chromatography mass spectrometry to determine the presence or absence of over 1500 chemicals. Predictors of pesticide detections and concentrations were identified using logistic regression, Wilcoxon rank sum tests, and Tobit regression models. The most frequently detected pesticides in wristbands were fipronil sulfide (87%), cypermethrin (56%), dichlorodiphenyldichloroethylene (DDE) (56%), dacthal (53%), and trans-permethrin (52%). Living within 100 m of active agricultural fields, having carpeting in the home, and having an exterminator treat the home in the past six months were associated with higher odds of detecting certain pesticides. Permethrin concentrations were lower for participants who cleaned their homes daily (GM: 1.9 vs. 6.8 ng/g/day, p = 0.01). In multivariable regression models, participants with doormats in the entryway of their home had lower concentrations (p < 0.05) of cypermethrin (87%), permethrin (99%), fipronil sulfide (69%) and DDE (75%). The results suggest that both nearby agricultural pesticide use and individual behaviors are associated with pesticide exposures.


Subject(s)
Air Pollutants, Occupational/analysis , Environmental Monitoring/instrumentation , Occupational Exposure/analysis , Pesticides/analysis , Adolescent , Agriculture , California/ethnology , Environmental Exposure/analysis , Farmers , Female , Hispanic or Latino , Humans , Silicones
SELECTION OF CITATIONS
SEARCH DETAIL
...