Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Biology (Basel) ; 13(4)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38666884

ABSTRACT

Obesity is a socially significant disease that is characterized by a disproportionate accumulation of fat. It is also associated with chronic inflammation, cancer, diabetes, and other comorbidities. Investigating biomarkers and pathological processes linked to obesity is especially vital for young individuals, given their increased potential for lifestyle modifications. By comparing the genetic, proteomic, and metabolomic profiles of individuals categorized as underweight, normal, overweight, and obese, we aimed to determine which omics layer most accurately reflects the phenotypic changes in an organism that result from obesity. We profiled blood plasma samples by employing three omics methodologies. The untargeted GC×GC-MS metabolomics approach identified 313 metabolites. To augment the metabolomic dataset, we integrated a label-free HPLC-MS/MS proteomics method, leading to the identification of 708 proteins. The genomic layer encompassed the genotyping of 647,250 SNPs. Utilizing omics data, we trained sparse Partial Least Squares models to predict body mass index. Molecular features exhibiting frequently non-zero coefficients were selected as potential biomarkers, and we further explored enriched biological pathways. Proteomics was the most effective in single-omics analyses, with a median absolute error (MAE) of 5.44 ± 0.31 kg/m2, incorporating an average of 24 proteins per model. Metabolomics showed slightly lower performance (MAE = 6.06 ± 0.33 kg/m2), followed by genomics (MAE = 6.20 ± 0.34 kg/m2). As expected, multiomic models demonstrated better accuracy, particularly the combination of proteomics and metabolomics (MAE = 4.77 ± 0.33 kg/m2), while including genomics data did not enhance the results. This manuscript is the first multiomics study of obesity in a gender-balanced cohort of young adults profiled by genomic, proteomic, and metabolomic methods. The comprehensive approach provides novel insights into the molecular mechanisms of obesity, opening avenues for more targeted interventions.

2.
Genes (Basel) ; 14(11)2023 Nov 11.
Article in English | MEDLINE | ID: mdl-38003008

ABSTRACT

Transcriptomics methods (RNA-Seq, PCR) today are more routine and reproducible than proteomics methods, i.e., both mass spectrometry and immunochemical analysis. For this reason, most scientific studies are limited to assessing the level of mRNA content. At the same time, protein content (and its post-translational status) largely determines the cell's state and behavior. Such a forced extrapolation of conclusions from the transcriptome to the proteome often seems unjustified. The ratios of "transcript-protein" pairs can vary by several orders of magnitude for different genes. As a rule, the correlation coefficient between transcriptome-proteome levels for different tissues does not exceed 0.3-0.5. Several characteristics determine the ratio between the content of mRNA and protein: among them, the rate of movement of the ribosome along the mRNA and the number of free ribosomes in the cell, the availability of tRNA, the secondary structure, and the localization of the transcript. The technical features of the experimental methods also significantly influence the levels of the transcript and protein of the corresponding gene on the outcome of the comparison. Given the above biological features and the performance of experimental and bioinformatic approaches, one may develop various models to predict proteomic profiles based on transcriptomic data. This review is devoted to the ability of RNA sequencing methods for protein abundance prediction.


Subject(s)
Proteome , Proteomics , Proteome/genetics , Proteomics/methods , Gene Expression Profiling , Transcriptome/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
3.
Int J Mol Sci ; 24(22)2023 Nov 18.
Article in English | MEDLINE | ID: mdl-38003667

ABSTRACT

RNA modifications, particularly N6-methyladenosine (m6A), are pivotal regulators of RNA functionality and cellular processes. We analyzed m6A modifications by employing Oxford Nanopore technology and the m6Anet algorithm, focusing on the HepG2 cell line. We identified 3968 potential m6A modification sites in 2851 transcripts, corresponding to 1396 genes. A gene functional analysis revealed the active involvement of m6A-modified genes in ubiquitination, transcription regulation, and protein folding processes, aligning with the known role of m6A modifications in histone ubiquitination in cancer. To ensure data robustness, we assessed reproducibility across technical replicates. This study underscores the importance of evaluating algorithmic reproducibility, especially in supervised learning. Furthermore, we examined correlations between transcriptomic, translatomic, and proteomic levels. A strong transcriptomic-translatomic correlation was observed. In conclusion, our study deepens our understanding of m6A modifications' multifaceted impacts on cellular processes and underscores the importance of addressing reproducibility concerns in analytical approaches.


Subject(s)
Nanopores , Methylation , Proteomics , Reproducibility of Results , RNA/metabolism , Adenosine/metabolism , Cell Line
4.
Mol Pharm ; 20(10): 4994-5005, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37733943

ABSTRACT

Rhizochalinin (Rhiz) is a recently discovered cytotoxic sphingolipid synthesized from the marine natural compound rhizochalin. Previously, Rhiz demonstrated high in vitro and in vivo efficacy in various cancer models. Here, we report Rhiz to be highly active in human glioblastoma cell lines as well as in patient-derived glioma-stem like neurosphere models. Rhiz counteracted glioblastoma cell proliferation by inducing apoptosis, G2/M-phase cell cycle arrest, and inhibition of autophagy. Proteomic profiling followed by bioinformatic analysis suggested suppression of the Akt pathway as one of the major biological effects of Rhiz. Suppression of Akt as well as IGF-1R and MEK1/2 kinase was confirmed in Rhiz-treated GBM cells. In addition, Rhiz pretreatment resulted in a more pronounced inhibitory effect of γ-irradiation on the growth of patient-derived glioma-spheres, an effect to which the Akt inhibition may also contribute decisively. In contrast, EGFR upregulation, observed in all GBM neurospheres under Rhiz treatment, was postulated to be a possible sign of incipient resistance. In line with this, combinational therapy with EGFR-targeted tyrosine kinase inhibitors synergistically increased the efficacy of Rhiz resulting in dramatic inhibition of GBM cell viability as well as a significant reduction of neurosphere size in the case of combination with lapatinib. Preliminary in vitro data generated using a parallel artificial membrane permeability (PAMPA) assay suggested that Rhiz cannot cross the blood brain barrier and therefore alternative drug delivery methods should be used in the further in vivo studies. In conclusion, Rhiz is a promising new candidate for the treatment of human glioblastoma, which should be further developed in combination with EGFR inhibitors.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/drug therapy , Proto-Oncogene Proteins c-akt/metabolism , Proteomics , Apoptosis , Cell Proliferation , ErbB Receptors , Cell Line, Tumor , Brain Neoplasms/drug therapy
5.
Metabolites ; 13(8)2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37623852

ABSTRACT

To represent the composition of small molecules circulating in HepG2 cells and the formation of the "core" of characteristic metabolites that often attract researchers' attention, we conducted a meta-analysis of 56 datasets obtained through metabolomic profiling via mass spectrometry and NMR. We highlighted the 288 most commonly studied compounds of diverse chemical nature and analyzed metabolic processes involving these small molecules. Building a complete map of the metabolome of a cell, which encompasses the diversity of possible impacts on it, is a severe challenge for the scientific community, which is faced not only with natural limitations of experimental technologies, but also with the absence of transparent and widely accepted standards for processing and presenting the obtained metabolomic data. Formulating our research design, we aimed to reveal metabolites crucial to the Hepg2 cell line, regardless of all chemical and/or physical impact factors. Unfortunately, the existing paradigm of data policy leads to a streetlight effect. When analyzing and reporting only target metabolites of interest, the community ignores the changes in the metabolomic landscape that hide many molecular secrets.

6.
Int J Mol Sci ; 24(3)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36768409

ABSTRACT

The continuous improvement of proteomic techniques, most notably mass spectrometry, has generated quantified proteomes of many organisms with unprecedented depth and accuracy. However, there is still a significant discrepancy in the reported numbers of total protein molecules per specific cell type. In this article, we explore the results of proteomic studies of Escherichia coli, Saccharomyces cerevisiae, and HeLa cells in terms of total protein copy numbers per cell. We observe up to a ten-fold difference between reported values. Investigating possible reasons for this discrepancy, we conclude that neither an unmeasured fraction of the proteome nor biases in the quantification of individual proteins can explain the observed discrepancy. We normalize protein copy numbers in each study using a total protein amount per cell as reported in the literature and create integrated proteome maps of the selected model organisms. Our results indicate that cells contain from one to three million protein molecules per µm3 and that protein copy density decreases with increasing organism complexity.


Subject(s)
Escherichia coli , Saccharomyces cerevisiae Proteins , Humans , Escherichia coli/metabolism , Saccharomyces cerevisiae/metabolism , Proteome/metabolism , Proteomics/methods , HeLa Cells , Saccharomyces cerevisiae Proteins/metabolism
7.
Biology (Basel) ; 12(2)2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36829477

ABSTRACT

Although modern biology is now in the post-genomic era with vastly increased access to high-quality data, the set of human genes with a known function remains far from complete. This is especially true for hundreds of mitochondria-associated genes, which are under-characterized and lack clear functional annotation. However, with the advent of multi-omics profiling methods coupled with systems biology algorithms, the cellular role of many such genes can be elucidated. Here, we report genes and pathways associated with TOMM34, Translocase of Outer Mitochondrial Membrane, which plays role in the mitochondrial protein import as a part of cytosolic complex together with Hsp70/Hsp90 and is upregulated in various cancers. We identified genes, proteins, and metabolites altered in TOMM34-/- HepG2 cells. To our knowledge, this is the first attempt to study the functional capacity of TOMM34 using a multi-omics strategy. We demonstrate that TOMM34 affects various processes including oxidative phosphorylation, citric acid cycle, metabolism of purine, and several amino acids. Besides the analysis of already known pathways, we utilized de novo network enrichment algorithm to extract novel perturbed subnetworks, thus obtaining evidence that TOMM34 potentially plays role in several other cellular processes, including NOTCH-, MAPK-, and STAT3-signaling. Collectively, our findings provide new insights into TOMM34's cellular functions.

8.
Int J Mol Sci ; 24(1)2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36614211

ABSTRACT

A meta-analysis of the results of targeted quantitative screening of human blood plasma was performed to generate a reference standard kit that can be used for health analytics. The panel included 53 of the 296 proteins that form a "stable" part of the proteome of a healthy individual; these proteins were found in at least 70% of samples and were characterized by an interindividual coefficient of variation <40%. The concentration range of the selected proteins was 10−10−10−3 M and enrichment analysis revealed their association with rare familial diseases. The concentration of ceruloplasmin was reduced by approximately three orders of magnitude in patients with neurological disorders compared to healthy volunteers, and those of gelsolin isoform 1 and complement factor H were abruptly reduced in patients with lung adenocarcinoma. Absolute quantitative data of the individual proteome of a healthy and diseased individual can be used as the basis for personalized medicine and health monitoring. Storage over time allows us to identify individual biomarkers in the molecular landscape and prevent pathological conditions.


Subject(s)
Blood Proteins , Plasma , Proteome , Humans , Blood Proteins/metabolism , Ceruloplasmin/metabolism , Mass Spectrometry/methods , Plasma/metabolism , Proteomics
9.
Int J Mol Sci ; 23(22)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36430347

ABSTRACT

The alphabet of building blocks for RNA molecules is much larger than the standard four nucleotides. The diversity is achieved by the post-transcriptional biochemical modification of these nucleotides into distinct chemical entities that are structurally and functionally different from their unmodified counterparts. Some of these modifications are constituent and critical for RNA functions, while others serve as dynamic markings to regulate the fate of specific RNA molecules. Together, these modifications form the epitranscriptome, an essential layer of cellular biochemistry. As of the time of writing this review, more than 300 distinct RNA modifications from all three life domains have been identified. However, only a few of the most well-established modifications are included in most reviews on this topic. To provide a complete overview of the current state of research on the epitranscriptome, we analyzed the extent of the available information for all known RNA modifications. We selected 25 modifications to describe in detail. Summarizing our findings, we describe the current status of research on most RNA modifications and identify further developments in this field.


Subject(s)
RNA Processing, Post-Transcriptional , RNA , RNA/metabolism , Nucleotides
10.
Cells ; 11(22)2022 11 10.
Article in English | MEDLINE | ID: mdl-36428976

ABSTRACT

Both biological and technical variations can discredit the reliability of obtained data in omics studies. In this technical note, we investigated the effect of prolonged cultivation of the HepG2 hepatoma cell line on its metabolomic profile. Using the GC × GC-MS approach, we determined the degree of metabolic variability across HepG2 cells cultured in uniform conditions for 0, 5, 10, 15, and 20 days. Post-processing of obtained data revealed substantial changes in relative abundances of 110 metabolites among HepG2 samples under investigation. Our findings have implications for interpreting metabolomic results obtained from immortal cells, especially in longitudinal studies. There are still plenty of unanswered questions regarding metabolomics variability and many potential areas for future targeted and panoramic research. However, we suggest that the metabolome of cell lines is unstable and may undergo significant transformation over time, even if the culture conditions remain the same. Considering metabolomics variability on a relatively long-term basis, careful experimentation with particular attention to control samples is required to ensure reproducibility and relevance of the research results when testing both fundamentally and practically significant hypotheses.


Subject(s)
Metabolome , Metabolomics , Humans , Reproducibility of Results , Hep G2 Cells , Metabolomics/methods , Gas Chromatography-Mass Spectrometry/methods
11.
Int J Mol Sci ; 22(23)2021 Dec 04.
Article in English | MEDLINE | ID: mdl-34884942

ABSTRACT

Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.


Subject(s)
Hep G2 Cells , Liver Neoplasms/pathology , Biomedical Research , Hepatocytes , Humans , Liver Neoplasms/genetics , Metabolome , Proteins/genetics , Proteins/metabolism
12.
Biology (Basel) ; 10(11)2021 Nov 04.
Article in English | MEDLINE | ID: mdl-34827124

ABSTRACT

Long-read direct RNA sequencing developed by Oxford Nanopore Technologies (ONT) is quickly gaining popularity for transcriptome studies, while fast turnaround time and low cost make it an attractive instrument for clinical applications. There is a growing interest to utilize transcriptome data to unravel activated biological processes responsible for disease progression and response to therapies. This trend is of particular interest for precision medicine which aims at single-patient analysis. Here we evaluated whether gene abundances measured by MinION direct RNA sequencing are suited to produce robust estimates of pathway activation for single sample scoring methods. We performed multiple RNA-seq analyses for a single sample that originated from the HepG2 cell line, namely five ONT replicates, and three replicates using Illumina NovaSeq. Two pathway scoring methods were employed-ssGSEA and singscore. We estimated the ONT performance in terms of detected protein-coding genes and average pairwise correlation between pathway activation scores using an exhaustive computational scheme for all combinations of replicates. In brief, we found that at least two ONT replicates are required to obtain reproducible pathway scores for both algorithms. We hope that our findings may be of interest to researchers planning their ONT direct RNA-seq experiments.

13.
J Pers Med ; 11(2)2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33494491

ABSTRACT

Obesity is a frightening chronic disease, which has tripled since 1975. It is not expected to slow down staying one of the leading cases of preventable death and resulting in an increased clinical and economic burden. Poor lifestyle choices and excessive intake of "cheap calories" are major contributors to obesity, triggering type 2 diabetes, cardiovascular diseases, and other comorbidities. Understanding the molecular mechanisms responsible for development of obesity is essential as it might result in the introducing of anti-obesity targets and early-stage obesity biomarkers, allowing the distinction between metabolic syndromes. The complex nature of this disease, coupled with the phenomenon of metabolically healthy obesity, inspired us to perform data-centric, hypothesis-generating pilot research, aimed to find correlations between parameters of classic clinical blood tests and proteomic profiles of 104 lean and obese subjects. As the result, we assembled patterns of proteins, which presence or absence allows predicting the weight of the patient fairly well. We believe that such proteomic patterns with high prediction power should facilitate the translation of potential candidates into biomarkers of clinical use for early-stage stratification of obesity therapy.

14.
Mar Drugs ; 18(12)2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33271756

ABSTRACT

Efficacy and mechanism of action of marine alkaloid 3,10-dibromofascaplysin (DBF) were investigated in human prostate cancer (PCa) cells harboring different levels of drug resistance. Anticancer activity was observed across all cell lines examined without signs of cross-resistance to androgen receptor targeting agents (ARTA) or taxane based chemotherapy. Kinome analysis followed by functional investigation identified JNK1/2 to be one of the molecular targets of DBF in 22Rv1 cells. In contrast, no activation of p38 and ERK1/2 MAPKs was observed. Inhibition of the drug-induced JNK1/2 activation or of the basal p38 activity resulted in increased cytotoxicity of DBF, whereas an active ERK1/2 was identified to be important for anticancer activity of the alkaloid. Synergistic effects of DBF were observed in combination with PARP-inhibitor olaparib most likely due to the induction of ROS production by the marine alkaloid. In addition, DBF intensified effects of platinum-based drugs cisplatin and carboplatin, and taxane derivatives docetaxel and cabazitaxel. Finally, DBF inhibited AR-signaling and resensitized AR-V7-positive 22Rv1 prostate cancer cells to enzalutamide, presumably due to AR-V7 down-regulation. These findings propose DBF to be a promising novel drug candidate for the treatment of human PCa regardless of resistance to standard therapy.


Subject(s)
Alkaloids/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Drug Resistance, Neoplasm , Oxindoles/pharmacology , Prostatic Neoplasms/drug therapy , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Dose-Response Relationship, Drug , Drug Synergism , Humans , Male , Mitogen-Activated Protein Kinases/metabolism , PC-3 Cells , Phosphorylation , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/pathology , Reactive Oxygen Species/metabolism , Receptors, Androgen/metabolism , Signal Transduction
15.
J Proteome Res ; 18(12): 4273-4276, 2019 12 06.
Article in English | MEDLINE | ID: mdl-31621326

ABSTRACT

The Chromosome-centric Human Proteome Project aims at characterizing the expression of proteins encoded in each chromosome at the tissue, cell, and subcellular levels. The proteomic profiling of a particular tissue or cell line commonly results in a substantial portion of proteins that are not observed (the "missing" proteome). The concurrent transcriptome profiling of the analyzed tissue/cells samples may help define the set of untranscribed genes in a given type of tissue or cell, thus narrowing the size of the "missing" proteome and allowing us to focus on defining the reasons behind undetected proteins, namely, whether they are technical (insufficient sensitivity of protein detection) or biological (correspond to not-translated transcripts). We believe that the quantitative polymerase chain reaction (qPCR) can provide an efficient approach to studying low-abundant transcripts related to undetected proteins due to its high sensitivity and the possibility of ensuring the specificity of detection via the simple Sanger sequencing of PCR products. Here we illustrated the feasibility of such an approach on a set of low-abundant transcripts. Although inapplicable to the analysis of whole transcriptome, qPCR can successfully be utilized to profile a limited cohort of transcripts encoded on a particular chromosome, as we previously demonstrated for human chromosome 18.


Subject(s)
Proteome/genetics , Proteomics/methods , Chromosomes, Human , Chromosomes, Human, Pair 18 , Gene Expression Profiling , Hep G2 Cells , Humans , Polymerase Chain Reaction/methods
16.
J Proteome Res ; 18(12): 4206-4214, 2019 12 06.
Article in English | MEDLINE | ID: mdl-31599598

ABSTRACT

This manuscript collects all the efforts of the Russian Consortium, bottlenecks revealed in the course of the C-HPP realization, and ways of their overcoming. One of the main bottlenecks in the C-HPP is the insufficient sensitivity of proteomic technologies, hampering the detection of low- and ultralow-copy number proteins forming the "dark part" of the human proteome. In the frame of MP-Challenge, to increase proteome coverage we suggest an experimental workflow based on a combination of shotgun technology and selected reaction monitoring with two-dimensional alkaline fractionation. Further, to detect proteins that cannot be identified by such technologies, nanotechnologies such as combined atomic force microscopy with molecular fishing and/or nanowire detection may be useful. These technologies provide a powerful tool for single molecule analysis, by analogy with nanopore sequencing during genome analysis. To systematically analyze the functional features of some proteins (CP50 Challenge), we created a mathematical model that predicts the number of proteins differing in amino acid sequence: proteoforms. According to our data, we should expect about 100 000 different proteoforms in the liver tissue and a little more in the HepG2 cell line. The variety of proteins forming the whole human proteome significantly exceeds these results due to post-translational modifications (PTMs). As PTMs determine the functional specificity of the protein, we propose using a combination of gene-centric transcriptome-proteomic analysis with preliminary fractionation by two-dimensional electrophoresis to identify chemically modified proteoforms. Despite the complexity of the proposed solutions, such integrative approaches could be fruitful for MP50 and CP50 Challenges in the framework of the C-HPP.


Subject(s)
Proteins/analysis , Proteome , Proteomics/methods , Biosensing Techniques , Electrophoresis, Gel, Two-Dimensional , Genome, Human , Humans , Microscopy, Atomic Force/methods , Nanotechnology/methods , Protein Processing, Post-Translational , Proteins/isolation & purification , Russia , Sensitivity and Specificity , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Workflow
17.
J Proteome Res ; 18(1): 120-129, 2019 01 04.
Article in English | MEDLINE | ID: mdl-30480452

ABSTRACT

This work continues the series of the quantitative measurements of the proteins encoded by different chromosomes in the blood plasma of a healthy person. Selected Reaction Monitoring with Stable Isotope-labeled peptide Standards (SRM SIS) and a gene-centric approach, which is the basis for the implementation of the international Chromosome-centric Human Proteome Project (C-HPP), were applied for the quantitative measurement of proteins in human blood plasma. Analyses were carried out in the frame of C-HPP for each protein-coding gene of the four human chromosomes: 18, 13, Y, and mitochondrial. Concentrations of proteins encoded by 667 genes were measured in 54 blood plasma samples of the volunteers, whose health conditions were consistent with requirements for astronauts. The gene list included 276, 329, 47, and 15 genes of chromosomes 18, 13, Y, and the mitochondrial chromosome, respectively. This paper does not make claims about the detection of missing proteins. Only 205 proteins (30.7%) were detected in the samples. Of them, 84, 106, 10, and 5 belonged to chromosomes 18, 13, and Y and the mitochondrial chromosome, respectively. Each detected protein was found in at least one of the samples analyzed. The SRM SIS raw data are available in the ProteomeXchange repository (PXD004374, PASS01192).


Subject(s)
Chromosomes, Human/chemistry , Plasma/chemistry , Proteome , Chromosomes, Human/genetics , Chromosomes, Human, Pair 13/chemistry , Chromosomes, Human, Pair 18/chemistry , Chromosomes, Human, Y/chemistry , Databases, Protein , Healthy Volunteers , Humans , Mitochondria/ultrastructure , Proteome/genetics
18.
J Proteome Res ; 17(12): 4258-4266, 2018 12 07.
Article in English | MEDLINE | ID: mdl-30354151

ABSTRACT

Currently, great interest is paid to the identification of "missing" proteins that have not been detected in any biological material at the protein level (PE1). In this paper, using the Universal Proteomic Standard sets 1 and 2 (UPS1 and UPS2, respectively) as an example, we characterized mass spectrometric approaches from the point of view of sensitivity (Sn), specificity (Sp), and accuracy (Ac). The aim of the paper was to show the utility of a mass spectra approach for protein detection. This sets consists of 48 high-purity human proteins without single aminoacid polymorphism (SAP) or post translational modification (PTM). The UPS1 set consists of the same 48 proteins at 5 pmols each, and in UPS2, proteins were grouped into 5 groups in accordance with their molar concentration, ranging from 10-11 to 10-6 M. Single peptides from the 92% and 96% of all sets of proteins could be detected in a pure solution of UPS2 and UPS1, respectively, by selected reaction monitoring with stable isotope-labeled standards (SRM-SIS). We also found that, in the presence of a biological matrix such as Escherichia coli extract or human blood plasma (HBP), SRM-SIS makes it possible to detect from 63% to 79% of proteins in the UPS2 set (sensitivity) with the highest specificity (∼100%) and an accuracy of 80% by increasing the sensitivity of shotgun and selected reaction monitoring combined with a stable-isotope-labeled peptide standard (SRM-SIS technology) by fractionating samples using reverse-phase liquid chromatography under alkaline conditions (2D-LC_alk). It is shown that this technique of sample fractionation allows the SRM-SIS to detect 98% of the single peptides from the proteins present in the pure solution of UPS2 (47 out of 48 proteins). When the extracts of E. coli or Pichia pastoris are added as biological matrixes to the UPS2, 46, and 45 out of 48 proteins (∼95%) can be detected, respectively, using the SRM-SIS combined with 2D-LC_alk. The combination of the 2D-LC_alk SRM-SIS and shotgun technologies allows us to increase the sensitivity up to 100% in the case of the proteins of the UPS2 set. The usage of that technology can be a solution for identifying the so-called "missing" proteins and, eventually, creating the deep proteome of a particular chromosome of tissue or organs. Experimental data have been deposited in the PeptideAtlas SRM Experiment Library with the dataset identifier PASS01192 and the PRIDE repository with the dataset identifier PXD007643.


Subject(s)
Chromatography, Liquid/methods , Mass Spectrometry/standards , Proteogenomics/methods , Proteome/analysis , Chromatography, Reverse-Phase/methods , Chromosomes, Human/genetics , Humans , Proteins/analysis , Reproducibility of Results , Sensitivity and Specificity
19.
Proteomes ; 6(1)2018 Feb 23.
Article in English | MEDLINE | ID: mdl-29473895

ABSTRACT

The Human Proteome Project is moving into the next phase of creating and/or reconsidering the functional annotations of proteins using the chromosome-centric paradigm. This challenge cannot be solved exclusively using automated means, but rather requires human intelligence for interpreting the combined data. To foster the integration between human cognition and post-genome array a number of specific tools were recently developed, among them CAPER, GenomewidePDB, and The Proteome Browser (TPB). For the purpose of tackling the task of protein functional annotating the Gene-Centric Content Management System (GenoCMS) was expanded with new features. The goal was to enable bioinformaticans to develop self-made applications and to position these applets within the generalized informational canvas supported by GenoCMS. We report the results of GenoCMS-enabled integration of the concordant informational flows in the chromosome-centric framework of the human chromosome 18 project. The workflow described in the article can be scaled to other human chromosomes, and also supplemented with new tracks created by the user. The GenoCMS is an example of a project-oriented informational system, which are important for public data sharing.

20.
J Proteome Res ; 16(12): 4311-4318, 2017 12 01.
Article in English | MEDLINE | ID: mdl-28956606

ABSTRACT

In this work targeted (selected reaction monitoring, SRM, PASSEL: PASS00697) and panoramic (shotgun LC-MS/MS, PRIDE: PXD00244) mass-spectrometric methods as well as transcriptomic analysis of the same samples using RNA-Seq and PCR methods (SRA experiment IDs: SRX341198, SRX267708, SRX395473, SRX390071) were applied for quantification of chromosome 18 encoded transcripts and proteins in human liver and HepG2 cells. The obtained data was used for the estimation of quantitative mRNA-protein ratios for the 275 genes of the selected chromosome in the selected tissues. The impact of methodological limitations of existing analytical proteomic methods on gene-specific mRNA-protein ratios and possible ways of overcoming these limitations for detection of missing proteins are also discussed.


Subject(s)
Chromosomes, Human, Pair 18/genetics , Proteins/analysis , RNA, Messenger/analysis , Hep G2 Cells , Humans , Liver/metabolism , Proteins/genetics , Proteomics/methods , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...