Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 15(3)2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36771371

ABSTRACT

Obesity, and its consequences for human health, is a huge and complicated problem that has no simple solution. The constant search for natural and safe compounds with systemic action that can be used for obesity prophylactics and treatment is hampered by the limited availability and variable quality of biomass of wild medicinal plants. Plant cell biotechnology is an alternative approach for the sustainable production of vegetative biomass or individual phytochemicals with high therapeutic potential. In this study, the suspension cell biomass of the medicinal plants, Dioscorea deltoidea Wall., Tribulus terrestris L., and Panax japonicus (T. Nees) C.A. Mey, produced in 20 L and 630 L bioreactors, were tested for therapeutic effects in rat models with alimentary-induced obesity. Three-month intake of water infusions of dry cell biomass (100 mg/g body weight) against the background of a hypercaloric diet reduced weight gain and the proportion of fat mass in the obese animals. In addition, cell biomass preparation reduced the intracellular dehydration and balanced the amounts of intra- and extracellular fluids in the body as determined by bioimpedance spectroscopy. A significant decrease in the glucose and cholesterol levels in the blood was also observed as a result of cell biomass administration for all species. Hypocholesterolemic activity reduced in the line P. japonicus > D. deltoidea > T. terrestris/liraglutide > intact group > control group. By the sum of parameters tested, the cell culture of D. deltoidea was considered the most effective in mitigating diet-induced obesity, with positive effects sometimes exceeding those of the reference drug liraglutide. A safety assessment of D. deltoidea cell phytopreparation showed no toxic effect on the reproductive function of the animals and their offspring. These results support the potential application of the biotechnologically produced cell biomass of medicinal plant species as safe and effective natural remedies for the treatment of obesity and related complications, particularly for the long-term treatment and during pregnancy and lactation periods when conventional treatment is often contraindicated.


Subject(s)
Dioscorea , Lipid Metabolism Disorders , Panax , Plants, Medicinal , Tribulus , Humans , Female , Rats , Animals , Diet, High-Fat/adverse effects , Dioscorea/chemistry , Hypoglycemic Agents/pharmacology , Tribulus/chemistry , Biomass , Liraglutide , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cell Culture Techniques/methods , Plants, Medicinal/chemistry , Obesity/drug therapy
2.
Plants (Basel) ; 11(21)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36365312

ABSTRACT

Water avens (Geum rivale L.) is a common Rosaceae plant widely spread in Europe and North America. It is rich in biologically active natural products, some of which are promising as prospective pharmaceuticals. The extracts of water avens are well known for their triterpenoid metabolites and associated anti-inflammatory, antimicrobial and antioxidant activities. However, the polyphenolic profiles of G. rivale L. are still awaiting complete characterization. Accordingly, the contribution of its individual components to the antioxidant, antibacterial and neuroprotective activity of the extracts is still unknown. As this plant can be available on an industrial scale, a better knowledge of its properly-relevant constituents might give access to new highly-efficient pharmaceutical substances and functional products. Therefore, herein we comprehensively characterize the secondary metabolome of G. rivale by ESI-HR-MS, ESI-HR-MSn and NMR spectroscopy with a special emphasis on the polyphenolic composition of its aerial parts. Furthermore, a multilateral evaluation of the antioxidant, neuroprotective and antibacterial properties of the aqueous and ethyl acetate fractions of the total aqueous alcoholic extract as well as individual isolated polyphenols was accomplished. Altogether four phenolic acid derivatives (trigalloyl hexose, caffeoyl-hexoside malate, ellagic acid and ellagic acid pentoside), six flavonoids (three quercetin derivatives, kaempferol and three its derivatives and two isorhamnetin derivatives) and four tannins (HHDP-hexoside, proantocyanidin dimer, pedunculagin I and galloyl-bis-HHDP-hexose) were identified in this plant for the first time. The obtained aqueous and ethyl acetate fractions of the total extract as well as the isolated individual compounds showed pronounced antioxidant activity. In addition, a pronounced antibacterial activity against several strains was proved for the studied fractions (for ethyl acetate fraction the highest activity against E. coli АТСС 25922 and S. aureus strains ATCC 27853 and SG-511 (MIC 15.6 µg/mL) was observed; for aqueous fraction-against Staphylococcus aureus SG-511 (MIC 31.2 µg/mL)). However, the anti-neurodegenerative (neuroprotective) properties could not be found with the employed methods. However, the antibacterial activity of the fractions could not be associated with any of the isolated individual major phenolics (excepting 3-O-methylellagic acid). Thus, the aerial parts of water avens represent a promising source of polyphenolic compounds with antioxidant activity and therefrom derived human health benefits, although the single constituents isolated so far lack a dominant selectively bioactive constituent in the bioassays performed.

3.
Plants (Basel) ; 11(18)2022 09 16.
Article in English | MEDLINE | ID: mdl-36145820

ABSTRACT

The demographic situation of the last few decades is characterized by the increased numbers of elderly and senile people, i.e., by the aging of the population. In humans, ageing is closely associated with the enhanced production of reactive oxygen species (ROS), development of systemic inflammation and related vascular atherosclerotic alterations and metabolic disorders, like obesity, diabetes mellitus and neurodegenerative diseases. As these age-related alterations are directly associated with up-regulation of ROS production and development of chronic oxidative stress, their onset can be essentially delayed by continuous daily consumption of dietary antioxidants-natural products of plant origin. Such antioxidants (in the form of plant extracts, biologically active complexes or individual compounds) can be supplemented to functional foods, i.e., dietary supplementations for daily diet aiming prolongation of active life and delay of the senescence onset. Thereby, use of widely spread medicinal plants might essentially improve cost efficiency of this strategy and availability of antioxidant-rich functional foods. Therefore, here we addressed, to the best of our knowledge for the first time, the antioxidant activity of the extracts prepared from the aerial parts of Filipendula ulmaria and Alnus glutinosa growing in the Kaliningrad region of Russia, and assessed the contents of the biologically active substances underlying these properties. It was found that the extract prepared with the leaves of Filipendula ulmaria and female catkins of Alnus glutinosa demonstrated high antioxidant activity, although the former plant was featured with a higher antioxidant potential. The highest antioxidant activity detected in the methanol extracts of Alnus glutinosa reached 1094.02 ± 14.53 µmol TE/g, radical scavenging of activity was 584.45 ± 35.3 µmol TE/g, reducing capacity at interaction with iron complex-471.63 ± 7.06 µmol TE/g. For the methanol extracts of Filipendula ulmaria the antioxidant activity reached 759.78 ± 19.08 µmol TE/g, antioxidant activity for free radical removal was 451.08 ± 24.45 µmol TE/g and antioxidant activity for restorative ability with iron complex was 332.28 ± 10.93 µmol TE/g. These values are consistent with the total yields of the extracts and their content of ellagic acid. The ethyl acetate extracts of the both plants showed just minimal antioxidant activity. Thus, the considered extracts have an essential potential. This creates good prospects for the further use of herbal extracts of Filipendula ulmaria and Alnus glutinosa as a source of natural antioxidants.

4.
Molecules ; 27(7)2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35408672

ABSTRACT

Maintaining quality of life with an increase in life expectancy is considered one of the global problems of our time. This review explores the possibility of using natural plant compounds with antioxidant, anti-inflammatory, anti-glycation, and anti-neurodegenerative properties to slow down the onset of age-related changes. Age-related changes such as a decrease in mental abilities, the development of inflammatory processes, and increased risk of developing type 2 diabetes have a significant impact on maintaining quality of life. Herbal preparations can play an essential role in preventing and treating neurodegenerative diseases that accompany age-related changes, including Alzheimer's and Parkinson's diseases. Medicinal plants have known sedative, muscle relaxant, neuroprotective, nootropic, and antiparkinsonian properties. The secondary metabolites, mainly polyphenolic compounds, are valuable substances for the development of new anti-inflammatory and hypoglycemic agents. Understanding how mixtures of plants and their biologically active substances work together to achieve a specific biological effect can help develop targeted drugs to prevent diseases associated with aging and age-related changes. Understanding the mechanisms of the biological activity of plant complexes and mixtures determines the prospects for using metabolomic and biochemical methods to prolong active longevity.


Subject(s)
Diabetes Mellitus, Type 2 , Plants, Medicinal , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Humans , Longevity , Plants, Medicinal/chemistry , Quality of Life
5.
Molecules ; 27(7)2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35408683

ABSTRACT

In the search for alternative treatment options for infections with multi-resistant germs, traditionally used medicinal plants are currently being examined more intensively. In this study, the antimicrobial and anti-biofilm activities of 14 herbal drugs were investigated. Nine of the tested drugs were traditionally used in Europe for treatment of local infections. For comparison, another five drugs monographed in the European Pharmacopoeia were used. Additionally, the total tannin and flavonoid contents of all tested drugs were analyzed. HPLC fingerprints were recorded to obtain further insights into the components of the extracts. The aim of the study was to identify herbal drugs that might be useable for treatment of infectious diseases, even with multidrug resistant E. coli, and to correlate the antimicrobial activity with the total content of tannins and flavonoids. The agar diffusion test and anti-biofilm assay were used to evaluate the antimicrobial potential of different extracts from the plants. Colorimetric methods (from European Pharmacopeia) were used for determination of total tannins and flavonoids. The direct antimicrobial activity of most of the tested extracts was low to moderate. The anti-biofilm activity was found to be down to 10 µg mL−1 for some extracts. Tannin contents between 2.2% and 10.4% of dry weight and total flavonoid contents between 0.1% and 1.6% were found. Correlation analysis indicates that the antimicrobial and the anti-biofilm activity is significantly (p < 0.05) dependent on tannin content, but not on flavonoid content. The data analysis revealed that tannin-rich herbal drugs inhibit pathogens in different ways. Thus, some of the tested herbal drugs might be useable for local infections with multi-resistant biofilm-forming pathogens. For some of the tested drugs, this is the first report about anti-biofilm activity, as well as total tannin and flavonoid content.


Subject(s)
Anti-Infective Agents , Plants, Medicinal , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Biofilms , Escherichia coli , Flavonoids/pharmacology , Microbial Sensitivity Tests , Plant Extracts/pharmacology , Tannins/analysis , Tannins/pharmacology
6.
Nutrients ; 13(11)2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34836067

ABSTRACT

In the present study, we explored the therapeutic potential of bioreactor-grown cell cultures of the medicinal plant species Dioscorea deltoidea, Tribulus terrestris and Panax japonicus to treat carbohydrate metabolism disorders (CMDs) in laboratory rats. In the adrenaline model of hyperglycemia, aqueous suspensions of cell biomass pre-administered at a dose of 100 mg dry biomass/kg significantly reduced glucose level in animal blood 1-2.5 h (D. deltoidea and T. terrestris) or 1 h (P. japonicus) after adrenaline hydrochloride administration. In a streptozotocin-induced model of type 2 diabetes mellitus, the cell biomass of D. deltoidea and T. terrestris acted towards normalization of carbohydrate and lipid metabolism, as evidenced by a significant reduction of daily diuresis (by 39-57%), blood-glucose level (by 46-51%), blood content in urine (by 78-80%) and total cholesterol (25-36%) compared to animals without treatment. Bioactive secondary metabolites identified in the cell cultures and potentially responsible for their actions were deltoside, 25(S)-protodioscin and protodioscin in D. deltoidea; furostanol-type steroidal glycosides and quinic acid derivatives in T. terrestris; and ginsenosides and malonyl-ginsenosides in P. japonicus. These results evidenced for high potential of bioreactor-grown cell suspensions of these species for prevention and treatment of CMD, which requires further investigation.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Dioscorea , Panax , Plant Extracts/pharmacology , Tribulus , Animals , Biomass , Bioreactors , Blood Glucose/drug effects , Carbohydrate Metabolism/drug effects , Cell Culture Techniques , Cholesterol/blood , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/chemically induced , Diuresis/drug effects , Hematuria/drug therapy , Lipid Metabolism/drug effects , Plants, Medicinal , Rats
7.
Mol Inform ; 39(11): e2000093, 2020 11.
Article in English | MEDLINE | ID: mdl-32662208

ABSTRACT

Chemical diversity of secondary metabolites provides a considerable variety of pharmacological actions with a significant extension due to their combinations in plant extracts. Production of plant-derived medicinal products in cell cultures has advantages because of the efficient use of different biotic and abiotic elicitors and better control of the developmental processes. Using PASS software, we predicted biological activity spectra for phytoconstituents identified in cell cultures of Panax japonicus (12 molecules), Tribulus terrestris (4 molecules), and Dioscorea deltoidea (3 molecules). Mechanisms of action associated with the antihypoxic effect were predicted for the majority of molecules. PharmaExpert software allowed analyzing possible synergistic or additive effects of the combinations of phytoconstituents associated with the antihypoxic action. Experimental studies of the antihypoxic effect of the plants' extracts in water and ethanol have been performed in 3 animal models: Acute asphyctic hypoxia (AAH), Acute haemic hypoxia (AHeH), and Acute histotoxic hypoxia (AHtH). Effects of Panax japonicus and Tribulus terrestris preparations exceeded the activity of the reference drug Mexidol in the AHtH model. In the AHeH model, all preparations demonstrated moderate activity; the most potent has been observed for Dioscorea deltoidea. Thus, we found that experimental studies in animal models have confirmed the in silico prediction.


Subject(s)
Cell Culture Techniques , Computer Simulation , Dioscorea/cytology , Panax/cytology , Phytochemicals/pharmacology , Tribulus/cytology , Animals , Biomass , Cell Hypoxia/drug effects , Cell Survival/drug effects , Male , Mice , Phytochemicals/chemistry , Software
8.
Molecules ; 24(8)2019 Apr 23.
Article in English | MEDLINE | ID: mdl-31018578

ABSTRACT

Legume crops represent the major source of food protein and contribute to human nutrition and animal feeding. An essential improvement of their productivity can be achieved by symbiosis with beneficial soil microorganisms-rhizobia (Rh) and arbuscular mycorrhizal (AM) fungi. The efficiency of these interactions depends on plant genotype. Recently, we have shown that, after simultaneous inoculation with Rh and AM, the productivity gain of pea (Pisum sativum L) line K-8274, characterized by high efficiency of interaction with soil microorganisms (EIBSM), was higher in comparison to a low-EIBSM line K-3358. However, the molecular mechanisms behind this effect are still uncharacterized. Therefore, here, we address the alterations in pea seed proteome, underlying the symbiosis-related productivity gain, and identify 111 differentially expressed proteins in the two lines. The high-EIBSM line K-8274 responded to inoculation by prolongation of seed maturation, manifested by up-regulation of proteins involved in cellular respiration, protein biosynthesis, and down-regulation of late-embryogenesis abundant (LEA) proteins. In contrast, the low-EIBSM line K-3358 demonstrated lower levels of the proteins, related to cell metabolism. Thus, we propose that the EIBSM trait is linked to prolongation of seed filling that needs to be taken into account in pulse crop breeding programs. The raw data have been deposited to the ProteomeXchange with identifier PXD013479.


Subject(s)
Gene Expression Regulation, Plant , Pisum sativum/genetics , Plant Proteins/isolation & purification , Proteome/isolation & purification , Seeds/genetics , Symbiosis/genetics , Bacteria/growth & development , Biomass , Chromatography, High Pressure Liquid , Fungi/physiology , Gene Ontology , Genotype , Metabolic Networks and Pathways/genetics , Molecular Sequence Annotation , Mycorrhizae/physiology , Pisum sativum/chemistry , Pisum sativum/metabolism , Pisum sativum/microbiology , Plant Proteins/classification , Plant Proteins/genetics , Plant Root Nodulation/genetics , Proteome/classification , Proteome/genetics , Proteomics/methods , Seeds/chemistry , Seeds/metabolism , Soil Microbiology , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...