Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 257
Filter
Add more filters










Publication year range
1.
Chemistry ; : e202400977, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38693865

ABSTRACT

We describe early and recent advances in the fascinating field of combined magnetic and optical properties of inorganic coordination compounds and in particular of 3d-4f single molecule magnets. We cover various applied techniques which allow for the correlation of results obtained in the frequency and time domain in order to highlight the specific properties of these compounds and the future challenges towards multidimensional spectroscopic tools. An important point is to understand the details of the interplay of magnetic and optical properties through performing time-resolved studies in the presence of external fields especially magnetic ones. This will enable further exploration of this fundamental interactions i. e. the two components of electromagnetic radiation influencing optical properties.

2.
Dalton Trans ; 53(3): 894-897, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38167674

ABSTRACT

The 20-nuclearity compound [Fe8Dy12(tea)8(teaH)12(NO3)12]·8MeCN (where teaH3 = triethanolamine) was synthesised and characterised through single crystal X-ray diffraction and magnetic measurements. The shape of the magnetic hysteresis in the microSQUID measurements was rationalised using the MAGELLAN program.

3.
Sci Rep ; 14(1): 1249, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38218940

ABSTRACT

Polyoxometalates (POM) are anionic oxoclusters of early transition metals that are of great interest for a variety of applications, including the development of sensors and catalysts. A crucial step in the use of POM in functional materials is the production of composites that can be further processed into complex materials, e.g. by printing on different substrates. In this work, we present an immobilization approach for POMs that involves two key processes: first, the stable encapsulation of POMs in the pores of mesoporous silica nanoparticles (MSPs) and, second, the formation of microstructured arrays with these POM-loaded nanoparticles. Specifically, we have developed a strategy that leads to water-stable, POM-loaded mesoporous silica that can be covalently linked to alkene-bearing surfaces by amine-Michael addition and patterned into microarrays by scanning probe lithography (SPL). The immobilization strategy presented facilitates the printing of hybrid POM-loaded nanomaterials onto different surfaces and provides a versatile method for the fabrication of POM-based composites. Importantly, POM-loaded MSPs are useful in applications such as microfluidic systems and sensors that require frequent washing. Overall, this method is a promising way to produce surface-printed POM arrays that can be used for a wide range of applications.

4.
Chem Sci ; 15(1): 113-123, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38131074

ABSTRACT

Complexes of lanthanide(iii) ions (Ln) with tetraazacyclododecane-N,N',N'',N'''-tetraacetate (DOTA) are a benchmark in the field of magnetism due to their well-investigated and sometimes surprising features. Ab initio calculations suggest that the ninth ligand, an axial water molecule, is key in defining the magnetic properties because it breaks the potential C4 symmetry of the resulting complexes. In this paper, we experimentally isolate the role of the water molecule by excluding it from the metal coordination sphere without altering the chemical structure of the ligand. Our complexes are therefore designed to be geometrically tetragonal and strict crystallographic symmetry is achieved by exploiting a combination of solution ionic strength and solid state packing effects. A thorough multitechnique approach has been used to unravel the electronic structure and magnetic anisotropy of the complexes. Moreover, the geometry enhancement allows us to predict, using only one angle obtained from the crystal structure, the ground state composition of all the studied derivatives (Ln = Tb to Yb). Therefore, these systems also provide an excellent platform to test the validity and limitations of the ab initio methods. Our combined experimental and theoretical investigation proves that the water molecule is indeed key in defining the magnetic anisotropy and the slow relaxation of these complexes.

5.
Acta Crystallogr E Crystallogr Commun ; 79(Pt 9): 791-794, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37693667

ABSTRACT

[(2-{[6-(1,3-Benzo-thia-zol-2-yl)pyridin-2-yl]carbonyl-aza-nid-yl}phen-yl)sulf-anido]nickel(II), [Ni(C19H11N3OS2)], crystallizes in the centrosymmetric monoclinic space group P21/n with one mol-ecule in the asymmetric unit. The expected ligand, a bis-Schiff base derived from pyridine-2,6-dicarbaldehyde and 2-amino-thio-phenol, had modified in situ in a both unexpected and unsymmetrical fashion. One arm had cyclized to form a benzo[d]thia-zol-2-yl functionality, while the imine linkage of the second arm had oxidized to an amide group. The geometry about the central NiII atom is distorted square-planar N3S. The mol-ecules form supra-molecular face-to-face dimers via rather strong π-π stacking inter-actions, with these dimers then linked into chains via pairwise C-H⋯O inter-actions.

6.
Inorg Chem ; 62(17): 6642-6648, 2023 May 01.
Article in English | MEDLINE | ID: mdl-37068219

ABSTRACT

The synthesis, structural, and magnetic characterization of [FeIII4LnIII4(teaH)8(N3)8(H2O)] (Ln = Gd and Y) and the previously reported isostructural Dy analogue are discussed. The commonly held belief that both FeIII and GdIII can be regarded as isotropic ions is shown to be an oversimplification. This conclusion is derived from the magnetic data for the YIII analogue in terms of the zero-field splitting seen for FeIII and from the fact that the magnetic data for the new GdIII analogue can only be fit employing an additional anisotropy term for the GdIII ions. Furthermore, the Fe4Gd4 ring shows slow relaxation of magnetization. Our analysis of the experimental magnetic data employs both density functional theory as well as the finite-temperature Lanczos method which finally enables us to provide an almost perfect fit of magnetocaloric properties.

7.
Int J Mol Sci ; 25(1)2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38203439

ABSTRACT

The [Gd8(opch)8(CO3)4(H2O)8]·4H2O·10MeCN coordination cluster (1) crystallises in P1¯. The Gd8 core is held together by four bridging carbonates derived from atmospheric CO2 as well as the carboxyhydrazonyl oxygens of the 2-hydroxy-3-methoxybenzylidenepyrazine-2-carbohydrazide (H2opch) Schiff base ligands. The magnetic measurements show that the GdIII ions are effectively uncoupled as seen from the low Weiss constant of 0.05 K needed to fit the inverse susceptibility to the Curie-Weiss law. Furthermore, the magnetisation data are consistent with the Brillouin function for eight independent GdIII ions. These features lead to a magnetocaloric effect with a high efficiency which is 89% of the theoretical maximum value.


Subject(s)
Carbon Dioxide , Oxygen , Ions
8.
Chem Sci ; 13(34): 10048-10056, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36128245

ABSTRACT

In situ metal-templated (hydrazone) condensation also called subcomponent self-assembly of 4,6-dihydrazino-pyrimidine, o-vanillin and dysprosium ions resulted in the formation of discrete hexa- or dodecanuclear metallosupramolecular Dy6(L)6 or Dy12(L)8 aggregates resulting from second-order template effects of the base and the lanthanide counterions used in these processes. XRD analysis revealed unique circular helical or tetragonal bipyramid architectures in which the bis(hydrazone) ligand L adopts different conformations and shows remarkable differences in its mode of metal coordination. While a molecule of trimethylamine acts as a secondary template that fills the void of the Dy6(L)6 assembly, sodium ions take on this role for the formation of heterobimetallic Dy12(L)8 by occupying vacant coordination sites, thus demonstrating that these processes can be steered in different directions upon subtle changes of reaction conditions. Furthermore, Dy6(L)6 shows an interesting spin-relaxation energy barrier of 435 K, which is amongst the largest values within multinuclear lanthanide single-molecular magnets.

9.
Chemphyschem ; 23(19): e202200215, 2022 10 06.
Article in English | MEDLINE | ID: mdl-35896954

ABSTRACT

Selectivity and image contrast are always challenging in magnetic resonance imaging (MRI), which are - inter alia - addressed by contrast agents. These compounds still need to be improved, and their relaxation properties, i. e., their paramagnetic relaxation enhancement (PRE), needs to be understood. The main goal is to improve specificity and relaxivities, especially at the high magnetic fields currently exploited not only in material science but also in the medical environment. Longitudinal and transverse relaxivities, r1 and r2 , which correspond to the longitudinal and transverse relaxation rates R1 and R2, normalized to the concentration of the paramagnetic moieties, need to be considered because both contribute to the image contrast. 1 H-relaxivities r1 and r2 of high-spin heterometallic clusters were studied containing lanthanide and transition-metal ions within a polyoxometalate matrix. A wide range of magnetic fields from 0.5 T/20 MHz to 33 T/1.4 GHz was applied. The questions addressed here concern the rotational and diffusion correlation times which determine the relaxivities and are affected by the solvent's viscosity. Moreover, the variation of the lanthanide and transition-metal ions of the clusters provided insights into the sensitivity of PRE with respect to the electron spin properties of the paramagnetic centers as well as cooperative effects between lanthanides and transition metal ions.


Subject(s)
Contrast Media , Lanthanoid Series Elements , Anions , Contrast Media/chemistry , Ions , Lanthanoid Series Elements/chemistry , Magnetic Resonance Imaging , Polyelectrolytes , Solvents
10.
ChemistryOpen ; 11(5): e202200086, 2022 May.
Article in English | MEDLINE | ID: mdl-35499181

ABSTRACT

Invited for this month's cover picture are the groups of Wolfgang Hübner (TU Kaiserslautern, Germany), Annie Powell (Karlsruhe Institut of Technology, Germany), and Andreas-Neil Unterreiner (Karlsruhe Institut of Technology, Germany). The cover picture shows the Dy2 Ni2 -molecular magnet being excited with a UV/Vis laser pulse, together with its time-resolved spectrum after the pulse. The comparison of the theoretical and the experimental spectra together with both the observed and the calculated relaxation times reveal, among others, three key points: the intermediate states participating in the laser-induced dynamics, the partial metal-to-oxygen charge-transfer excitations, and the order of magnitude of the coupling of the molecular magnet to the thermal bath of the environment. Read the full text of their Full Paper at 10.1002/open.202100153.

11.
Chemistry ; 28(2): e202102592, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34806228

ABSTRACT

The phenomenon of single molecule magnet (SMM) behavior of mixed valent Mn12 coordination clusters of general formula [MnIII 8 MnIV 4 O12 (RCOO)16 (H2 O)4 ] had been exemplified by bulk samples of the archetypal [MnIII 8 MnIV 4 O12 (CH3 COO)16 (H2 O)4 ] (4) molecule, and the molecular origin of the observed magnetic behavior has found support from extensive studies on the Mn12 system within crystalline material or on molecules attached to a variety of surfaces. Here we report the magnetic signature of the isolated cationic species [Mn12 O12 (CH3 COO)15 (CH3 CN)]+ (1) by gas phase X-ray Magnetic Circular Dichroism (XMCD) spectroscopy, and we find it closely resembling that of the corresponding bulk samples. Furthermore, we report broken symmetry DFT calculations of spin densities and single ion tensors of the isolated, optimized complexes [Mn12 O12 (CH3 COO)15 (CH3 CN)]+ (1), [Mn12 O12 (CH3 COO)16 ] (2), [Mn12 O12 (CH3 COO)16 (H2 O)4 ] (3), and the complex in bulk geometry [MnIII 8 MnIV 4 O12 (CH3 COO)16 (H2 O)4 ] (5). The found magnetic fingerprints - experiment and theory alike - are of a remarkable robustness: The MnIV 4 core bears almost no magnetic anisotropy while the surrounding MnIII 8 ring is highly anisotropic. These signatures are truly intrinsic properties of the Mn12 core scaffold within all of these complexes and largely void of the environment. This likely holds irrespective of bulk packing effects.

12.
Molecules ; 26(24)2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34946561

ABSTRACT

The current trend for ultra-high-field magnetic resonance imaging (MRI) technologies opens up new routes in clinical diagnostic imaging as well as in material imaging applications. MRI selectivity is further improved by using contrast agents (CAs), which enhance the image contrast and improve specificity by the paramagnetic relaxation enhancement (PRE) mechanism. Generally, the efficacy of a CA at a given magnetic field is measured by its longitudinal and transverse relaxivities r1 and r2, i.e., the longitudinal and transverse relaxation rates T1-1 and T2-1 normalized to CA concentration. However, even though basic NMR sensitivity and resolution become better in stronger fields, r1 of classic CA generally decreases, which often causes a reduction of the image contrast. In this regard, there is a growing interest in the development of new contrast agents that would be suitable to work at higher magnetic fields. One of the strategies to increase imaging contrast at high magnetic field is to inspect other paramagnetic ions than the commonly used Gd(III)-based CAs. For lanthanides, the magnetic moment can be higher than that of the isotropic Gd(III) ion. In addition, the symmetry of electronic ground state influences the PRE properties of a compound apart from diverse correlation times. In this work, PRE of water 1H has been investigated over a wide range of magnetic fields for aqueous solutions of the lanthanide containing polyoxometalates [DyIII(H2O)4GeW11O39]5- (Dy-W11), [ErIII(H2O)3GeW11O39]5- (Er-W11) and [{ErIII(H2O)(CH3COO)(P2W17O61)}2]16- (Er2-W34) over a wide range of frequencies from 20 MHz to 1.4 GHz. Their relaxivities r1 and r2 increase with increasing applied fields. These results indicate that the three chosen POM systems are potential candidates for contrast agents, especially at high magnetic fields.

13.
Chemistry ; 27(61): 15085-15094, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34597423

ABSTRACT

We report three structurally related single ion Dy compounds using the pentadentate ligand 2,6-bis((E)-1-(2-(pyridin-2-yl)-hydrazineylidene)ethyl)pyridine (H2 dapp) [Dy(H2 dapp)(NO3 )2 ]NO3 (1), [Dy(H2 dapp)(OAc)2 ]Cl (2) and [Dy(H2 dapp)(NO3 )2 ]Cl0.92 (NO3 )0.08 (3). The (H2 dapp) occupies a helical twisted pentagonal equatorial arrangement with two anionic ligands in the axial positions. Further influence on the electronic and magnetic structure is provided by a closely associated counterion interacting with the central N-H group of the (H2 dapp). The slow relaxation of the magnetisation shows that the anionic acetates give the greatest slowing down of the magnetisation reversal. Further influence on the relaxation properties of compounds1 and 2 is the presence of short nitrate-nitrate intermolecular ligand contact opening further lattice relaxation pathways.

14.
Chemistry ; 27(61): 15102-15108, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34617631

ABSTRACT

The {Fe2 Dy2 } butterfly systems can show single molecule magnet (SMM) behaviour, the nature of which depends on details of the electronic structure, as previously demonstrated for the [Fe2 Dy2 (µ3 -OH)2 (Me-teaH)2 (O2 CPh)6 ] compound, where the [N,N-bis-(2-hydroxyethyl)-amino]-2-propanol (Me-teaH3 ) ligand is usually used in its racemic form. Here, we describe the consequences for the SMM properties by using enantiopure versions of this ligand and present the first homochiral 3d/4 f SMM, which could only be obtained for the S enantiomer of the ligand for [Fe2 Dy2 (µ3 -OH)2 (Me-teaH)2 (O2 CPh)6 ] since the R enantiomer underwent significant racemisation. To investigate this further, we prepared the [Fe2 Dy2 (µ3 -OH)2 (Me-teaH)2 (O2 CPh)4 (NO3 )2 ] version, which could be obtained as the RS-, R- and S-compounds. Remarkably, the enantiopure versions show enhanced slow relaxation of magnetisation. The use of the enantiomerically pure ligand suppresses QTM, leading to the conclusion that use of enantiopure ligands is a "gamechanger" by breaking the cluster symmetry and altering the intimate details of the coordination cluster's molecular structure.

15.
Chemistry ; 27(61): 15043-15065, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34582064

ABSTRACT

In this Review we discuss the tuning handles which can be used to steer the magnetic properties of FeIII -4 f "butterfly" compounds. The majority of presented compounds were produced in the context of project A3 "Di- to tetranuclear compounds incorporating highly anisotropic paramagnetic metal ions" within the SFB/TRR88 "3MET". These contain {FeIII 2 Ln2 } cores encapsulated in ligand shells which are easy to tune in a "test-bed" system. We identify the following advantages and variables in such systems: (i) the complexes are structurally simple usually with one crystallographically independent FeIII and LnIII , respectively. This simplifies theory and anaylsis; (ii) choosing Fe allows 57 Fe Mössbauer spectroscopy to be used as an additional technique which can give information about oxidation levels and spin states, local moments at the iron nuclei and spin-relaxation and, more importantly, about the anisotropy not only of the studied isotope, but also of elements interacting with this isotope; (iii) isostructural analogues with all the available (i. e. not Pm) 4 f ions can be synthesised, enabling a systematic survey of the influence of the 4 f ion on the electronic structure; (iv) this cluster type is obtained by reacting [FeIII 3 O(O2 CR)6 (L)3 ](X) (X=anion, L=solvent such as H2 O, py) with an ethanolamine-based ligand L' and lanthanide salts. This allows to study analogues of [FeIII 2 Ln2 (µ3 -OH)2 (L')2 (O2 CR)6 ] using the appropriate iron trinuclear starting materials. (v) the organic main ligand can be readily functionalised, facilitating a systematic investigation of the effect of organic substituents on the ligands on the magnetic properties of the complexes. We describe and discuss 34 {MIII 2 Ln2 } (M=Fe or in one case Al) butterfly compounds which have been reported up to 2020. The analysis of these gives perspectives for designing new SMM systems with specific electronic and magnetic signatures.

16.
Chemistry ; 27(61): 15095-15101, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34554613

ABSTRACT

In an assisted self-assembly approach starting from the [Mn6 O2 (piv)10 (4-Me-py)2 (pivH)2 ] cluster a family of Mn-Ln compounds (Ln=Pr-Yb) was synthesised. The reaction of [Mn6 O2 (piv)10 (4-Me-py)2 (pivH)2 ] (1) with N-methyldiethanolamine (mdeaH2 ) and Ln(NO3 )3 ⋅ 6H2 O in MeCN generally yields two main structure types: for Ln=Tb-Yb a previously reported Mn5 Ln4 motif is obtained, whereas for Ln=Pr-Eu a series of Mn7 Ln3 clusters is obtained. Within this series the GdIII analogue represents a special case because it shows both structural types as well as a third Mn2 Ln2 inverse butterfly motif. Variation in reaction conditions allows access to different structure types across the whole series. This prompts further studies into the reaction mechanism of this cluster assisted self-assembly approach. For the Mn7 Ln3 analogues reported here variable-temperature magnetic susceptibility measurements suggest that antiferromagnetic interactions between the spin carriers are dominant. Compounds incorporating Ln=NdIII (2), SmIII (3) and GdIII (5) display SMM behaviour. The slow relaxation of the magnetisation for these compounds was confirmed by ac measurements above 1.8 K.

17.
Chemistry ; 27(61): 15080-15084, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34416050

ABSTRACT

The 36-NiII -containing 54-tungsto-6-silicate, [Ni36 (OH)18 (H2 O)36 (SiW9 O34 )6 ]6- (Ni36 ) was synthesized by a simple one-pot reaction of the Ni2 -pivalate complex [Ni2 (µ-OH2 )(O2 CCMe3 )4 (HO2 CCMe3 )4 ] with the trilacunary [SiW9 O34 ]10- polyanion precursor in water and structurally characterized by a multitude of physicochemical techniques including single-crystal XRD, FTIR, TGA, elemental analysis, magnetic and electrochemical studies. Polyanion Ni36 comprises six equivalent {NiII 6 SiW9 } units which are linked by Ni-O-W bridges forming a macrocyclic assembly. Magnetic studies demonstrate that the {Ni6 } building blocks in Ni36 remain magnetically intact while forming a hexagonal ring with antiferromagnetic exchange interactions between adjacent {Ni6 } units. Electrochemical studies indicate that the first reduction is reversible and associated with the WVI/V couple, whereas the second reduction is irreversible attributed to the NiII/0 couple.


Subject(s)
Nickel , Silicates , Crystallography, X-Ray , Magnetic Phenomena , Molecular Structure
18.
Dalton Trans ; 49(37): 13090-13099, 2020 Sep 29.
Article in English | MEDLINE | ID: mdl-32929443

ABSTRACT

We report two isostructural dinuclear transition metal complexes [M2(HL)2(N3)4], where M = Ni2+ (BS-1), Mn2+ (BS-2), and HL is (2-methyl-2-((pyridin-2-ylmethyl)amino)propan-1-ol) and investigate them as molecular sensors towards hazardous entities. BS-1 shows high selectivity towards the S2- and Ag+ ions, easily observed by the naked eye colour change and its detection limit in aqueous solutions for the S2- ion was calculated as 0.55 µM with a binding constant of 3.28 × 105 M-1, while the limit for the Ag+ ion is 21.8 µM. Notably, BS-2 shows good selectivity towards the Ag+ ion with a detection limit of 10.84 µM. Spectroscopic and DFT studies shed light on the mechanistic course of interaction between the host and guest entities, suggesting a sulphide-mediated reduction of the azide mechanism. In a nutshell, these simple transition metal complexes were exploited for discriminately detecting hazardous analytes with real field applications in analytical science (via. "Dip-Stick" approach) as well as engineering science, which provides a significant contribution in the recent advancement of supramolecular chemistry.

19.
Front Chem ; 8: 701, 2020.
Article in English | MEDLINE | ID: mdl-32923426

ABSTRACT

We report the synthesis and magnetic properties of three new nine-membered Fe(III)-Dy(III) cyclic coordination clusters (CCCs), with a core motif of [Fe6Dy3(µ-OMe)9(vanox)6(X-benz)6] where the benzoate ligands are substituted in the para-position with X = F (1), Cl (2), Br (3). Single crystal X-ray diffraction structure analyses show that for the smaller fluorine or chlorine substituents the resulting structures exhibit an isostructural Fe6Dy3 core, whilst the 4-bromobenzoate ligand leads to structural distortions which affect the dynamic magnetic behavior. The magnetic susceptibility and magnetization of 1-3 were investigated and show similar behavior in the dc (direct current) magnetic data. Additional ac (alternating current) magnetic measurements show that all compounds exhibit frequency-dependent and temperature-dependent signals in the in-phase and out-of-phase component of the susceptibility and can therefore be described as field-induced SMMs. The fluoro-substituted benzoate cluster 1 shows a magnetic behavior closely similar to that of the corresponding unsubstituted Fe6Dy3 cluster, with Ueff = 21.3 K within the Orbach process. By increasing the size of the substituent toward 4-chlorobenzoate within 2, an increase of the energy barrier to Ueff = 36.1 K was observed. While the energy barrier becomes higher from 1 to 2, highlighting that the introduction of different substituents on the benzoate ligand in the para-position has an impact on the magnetic properties, cluster 3 shows a significantly different SMM behavior where Ueff is reduced in the Orbach regime to only 4.9 K.

20.
J Am Chem Soc ; 142(35): 14838-14842, 2020 Sep 02.
Article in English | MEDLINE | ID: mdl-32786752

ABSTRACT

Cyclic coordination clusters (CCCs) are proving to provide an extra dimension in terms of exotic magnetic behavior as a result of their finite but cyclized chain structures. The Fe18Dy6 CCC is a Single Molecule Magnet with the highest nuclearity among Ln containing clusters. The three isostructural compounds [Fe18Ln6(µ-OH)6(ampd)12(Hampd)12(PhCO2)24](NO3)6·38MeCN for Ln = DyIII (1), LuIII (2), or YIII (3), where H2ampd = 2-amino-2-methyl-1,3-propanediol, are reported. These can be described in terms of the cyclization of six {Fe3Ln(µOH)(ampd)2(Hampd)2(PhCO2)4}+ units with six nitrate counterions to give the neutral cluster. The overall structure consists of two giant Dy3 triangles sandwiching a strongly antiferromagnetically coupled Fe18 ring, leading to a toroidal arrangement of the anisotropy axis of the Dy ions, making this the biggest toroidal arrangement on a molecular level known so far.

SELECTION OF CITATIONS
SEARCH DETAIL
...