Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(21)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37958493

ABSTRACT

The effect of high-temperature (HT) stress on nicotine biosynthesis in Nicotiana attenuata was examined. Nicotine content was measured in mature leaves, young sink leaves, and in roots from well-watered plants grown at 25 °C as controls and from plants exposed to 38 °C and 43 °C temperatures applied for 24, 48, 72, and 96 h duration. At 38 °C, all leaf nicotine levels were significantly less than control plants for up to 72 h exposure but rose sharply thereafter to levels significantly greater than controls with 96 h exposure. In contrast, plants exposed to 43 °C never exhibited a reduction in leaf nicotine content and showed an increase in content with just 48 h exposure. Using radioactive 11CO2 and 13NO3-, we found that HT stress reduced both CO2 fixation and nitrate uptake. Furthermore, radiocarbon flux analysis revealed that 'new' carbon partitioning (as 11C) into the 11C-radiolabeled amino acid (AA) pool was significantly reduced with HT stress as were yields of [11C]-aspartic acid, an important AA in nicotine biosynthesis, and its beta-amido counterpart [11C]-asparagine. In contrast, [12C]-aspartic acid levels appeared unaffected at 38 °C but were elevated at 43 °C relative to controls. [12C]-Asparagine levels were noted to be elevated at both stress temperatures. Since HT reductions in carbon input and nitrogen uptake were noted to impede de novo AA biosynthesis, protein degradation at HT was examined as a source of AAs. Here, leaf total soluble protein (TSP) content was reduced 39% with long exposures to both stress temperatures. However, Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) which was 41% TSP appeared unaffected. Altogether, these results support the theory that plant proteins other than Rubisco degrade at elevated temperatures freeing up essential AAs in support of nicotine biosynthesis.


Subject(s)
Nicotiana , Nicotine , Nicotiana/metabolism , Nicotine/metabolism , Hot Temperature , Ribulose-Bisphosphate Carboxylase/metabolism , Carbon Dioxide/metabolism , Asparagine/metabolism , Aspartic Acid/metabolism , Photosynthesis , Carbon , Plant Leaves/metabolism
2.
Microorganisms ; 11(7)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37512900

ABSTRACT

As the use of microbial inoculants in agriculture rises, it becomes important to understand how the environment may influence microbial ability to promote plant growth. This work examines whether there are light dependencies in the biological functions of Azospirillum brasilense, a commercialized prolific grass-root colonizer. Though classically defined as non-phototrophic, A. brasilense possesses photoreceptors that could perceive light conducted through its host's roots. Here, we examined the light dependency of atmospheric biological nitrogen fixation (BNF) and auxin biosynthesis along with supporting processes including ATP biosynthesis, and iron and manganese uptake. Functional mutants of A. brasilense were studied in light and dark environments: HM053 (high BNF and auxin production), ipdC (capable of BNF, deficient in auxin production), and FP10 (capable of auxin production, deficient in BNF). HM053 exhibited the highest rate of nitrogenase activity with the greatest light dependency comparing iterations in light and dark environments. The ipdC mutant showed similar behavior with relatively lower nitrogenase activity observed, while FP10 did not show a light dependency. Auxin biosynthesis showed strong light dependencies in HM053 and FP10 strains, but not for ipdC. Ferrous iron is involved in BNF, and a light dependency was observed for microbial 59Fe2+ uptake in HM053 and ipdC, but not FP10. Surprisingly, a light dependency for 52Mn2+ uptake was only observed in ipdC. Finally, ATP biosynthesis was sensitive to light across all three mutants favoring blue light over red light compared to darkness with observed ATP levels in descending order for HM053 > ipdC > FP10.

3.
Microorganisms ; 10(7)2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35889009

ABSTRACT

Azospirillum brasilense is a prolific grass-root colonizing bacteria well-known for its ability to promote plant growth in several cereal crops. Here we show that one of the mechanisms of action in boosting plant performance is through increased assimilation of the micronutrient manganese by the host. Using radioactive 52Mn2+ (t½ 5.59 d), we examined the uptake kinetics of this micronutrient in young maize plants, comparing the performance of three functional mutants of A. brasilense, including HM053, a high auxin-producing and high N2-fixing strain; ipdC, a strain with a reduced auxin biosynthesis capacity; and FP10, a strain deficient in N2-fixation that still produces auxin. HM053 had the greatest effect on host 52Mn2+ uptake, with a significant increase seen in shoot radioactivity relative to non-inoculated controls. LA-ICP-MS analysis of root sections revealed higher manganese distributions in the endodermis of HM053-inoculated plants and overall higher manganese concentrations in leaves. Finally, increased leaf manganese concentration stimulated photosynthesis as determined by measuring leaf fixation of radioactive 11CO2 with commensurate increases in chlorophyll concentration.

4.
Physiol Plant ; 174(2): e13675, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35316539

ABSTRACT

In agriculture, plant growth promoting bacteria (PGPB) are increasingly used for reducing environmental stress-related crop losses through mutualistic actions of these microorganisms, activating physiological and biochemical responses, building tolerances within their hosts. Here we report the use of radioactive carbon-11 (t½ 20.4 min) to examine the metabolic and physiological responses of Zea mays to Azospirillum brasilense (HM053) inoculation while plants were subjected to salinity and low nitrogen stresses. Host metabolism of "new" carbon resources (as 11 C) and physiology including [11 C]-photosynthate translocation were measured in response to imposed growth conditions. Salinity stress caused shortened, dense root growth with a 6-fold increase in foliar [11 C]-raffinose, a potent osmolyte. ICP-MS analyses revealed increased foliar Na+ levels at the expense of K+ . HM053 inoculation relieved these effects, reinstating normal root growth, lowering [11 C]-raffinose levels while increasing [11 C]-sucrose and its translocation to the roots. Na+ levels remained elevated with inoculation, but K+ levels were boosted slightly. Low nitrogen stress yielded longer roots possessing high levels of anthocyanins. Metabolic analysis revealed significant shifts in "new" carbon partitioning into the amino acid pool under low nitrogen stress, with significant increases in foliar [11 C]-glutamate, [11 C]-aspartate, and [11 C]-asparagine, a noted osmoprotectant. 11 CO2 fixation and [11 C]-photosynthate translocation also decreased, limiting carbon supply to roots. However, starch levels in roots were reduced under nitrogen limitation, suggesting that carbon repartitioning could be a compensatory action to support root growth. Finally, inoculation with HM053 re-instated normal root growth, reduced anthocyanin, boosted root starch, and returned 11 C-allocation levels back to those of unstressed plants.


Subject(s)
Azospirillum brasilense , Plant Roots , Anthocyanins/metabolism , Azospirillum brasilense/metabolism , Carbon/metabolism , Carbon Radioisotopes , Nitrogen/metabolism , Plant Roots/metabolism , Raffinose/metabolism , Starch/metabolism
5.
Plants (Basel) ; 11(3)2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35161222

ABSTRACT

In agriculture, boron is known to play a critical role in healthy plant growth. To dissect the role of boron in maize metabolism, radioactive carbon-11 (t½ 20.4 min) was used to examine the physiological and metabolic responses of 3-week-old B73 maize plants to different levels of boron spanning 0 mM, 0.05 mM, and 0.5 mM boric acid (BA) treatments. Growth behavior, of both shoots and roots, was recorded and correlated to plant physiological responses. 11CO2 fixation, leaf export of [11C]-photosynthates, and their rate of transport increased systematically with increasing BA concentrations, while the fraction of [11C]-photosynthates delivered to the roots under 0 mM and 0.5 mM BA treatments was lower than under 0.05 mM BA treatment, likely due to changes in root growth. Additionally, solid-phase extraction coupled with gamma counting, radio-fluorescence thin layer chromatography, and radio-fluorescence high-performance liquid chromatography techniques applied to tissue extracts provided insight into the effects of BA treatment on 'new' carbon (as 11C) metabolism. Most notable was the strong influence reducing boron levels had on raising 11C partitioning into glutamine, aspartic acid, and asparagine. Altogether, the growth of maize under different regimes of boron affected 11CO2 fixation, its metabolism and allocation belowground, and altered root growth. Finally, inductively coupled plasma mass spectrometry provided insight into the effects of BA treatment on plant uptake of other essential nutrients. Here, levels of boron and zinc systematically increased in foliar tissues with increasing BA concentration. However, levels of magnesium, potassium, calcium, manganese, and iron remained unaffected by treatment. The rise in foliar zinc levels with increased BA concentration may contribute to improved 11CO2 fixation under these conditions.

6.
Microorganisms ; 9(8)2021 Jul 25.
Article in English | MEDLINE | ID: mdl-34442661

ABSTRACT

Herbaspirillum seropedicae, as an endophyte and prolific root colonizer of numerous cereal crops, occupies an important ecological niche in agriculture because of its ability to promote plant growth and potentially improve crop yield. More importantly, there exists the untapped potential to harness its ability, as a diazotroph, to fix atmospheric N2 as an alternative nitrogen resource to synthetic fertilizers. While mechanisms for plant growth promotion remain controversial, especially in cereal crops, one irrefutable fact is these microorganisms rely heavily on plant-borne carbon as their main energy source in support of their own growth and biological functions. Biological nitrogen fixation (BNF), a microbial function that is reliant on nitrogenase enzyme activity, is extremely sensitive to the localized nitrogen environment of the microorganism. However, whether internal root colonization can serve to shield the microorganisms and de-sensitize nitrogenase activity to changes in the soil nitrogen status remains unanswered. We used RAM10, a GFP-reporting strain of H. seropedicae, and administered radioactive 11CO2 tracer to intact 3-week-old maize leaves and followed 11C-photosynthates to sites within intact roots where actively fluorescing microbial colonies assimilated the tracer. We examined the influence of administering either 1 mM or 10 mM nitrate during plant growth on microbial demands for plant-borne 11C. Nitrogenase activity was also examined under the same growth conditions using the acetylene reduction assay. We found that plant growth under low nitrate resulted in higher nitrogenase activity as well as higher microbial demands for plant-borne carbon than plant growth under high nitrate. However, carbon availability was significantly diminished under low nitrate growth due to reduced host CO2 fixation and reduced allocation of carbon resources to the roots. This response of the host caused significant inhibition of microbial growth. In summary, internal root colonization did little to shield these endophytic microorganisms from the nitrogen environment.

SELECTION OF CITATIONS
SEARCH DETAIL
...