Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Microbiol ; 81(7): 177, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758473

ABSTRACT

The purpose of this study was to determine if orangutans (Pongo spp.) living in captivity at a zoo in Wisconsin were colonized with antimicrobial-resistant bacteria and, if found, to identify underlying genetic mechanisms contributing to their resistant phenotypes. We hypothesize that since antimicrobial-resistant bacteria are so prevalent within humans, the animals could also be carriers of such strains given the daily contact between the animals and the zoo staff that care for them. To test this theory, fecal samples from two orangutans were examined for resistant bacteria by inoculation on HardyCHROM™ ESBL and HardyCHROM™ CRE agars. Isolates were identified using MALDI-TOF mass spectrometry and antimicrobial susceptibility testing was performed using a Microscan autoSCAN-4 System. An isolate was selected for additional characterization, including whole genome sequencing (WGS). Using the Type (Strain) Genome Server (TYGS) the bacterium was identified as Escherichia coli. The sequence type identified was (ST/phylogenetic group/ß-lactamase): ST6448/B1/CTX-M-55.


Subject(s)
Escherichia coli Infections , Escherichia coli , Feces , beta-Lactamases , Animals , Animals, Zoo/microbiology , Anti-Bacterial Agents/pharmacology , beta-Lactamases/genetics , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Escherichia coli Proteins/genetics , Feces/microbiology , Genome, Bacterial , Microbial Sensitivity Tests , Phylogeny , Whole Genome Sequencing , Wisconsin
2.
J Invertebr Pathol ; 128: 73-9, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25968106

ABSTRACT

Hepatopancreatic parvo-like virus (HPV) has been reported from a variety of shrimp species around the world, including Australia, and thought to impact negatively on production, but until now there was scant information available on variation of HPV over time, ponds and shrimp lineages or families, information that could be used to manage or reduce virus levels. Here we report HPV copy number estimated using qPCR from 1500 individual shrimp sampled over three years and encompassing 91 ponds, 21 breeding groups or lineages and 40 families. HPV copy number variation between ponds was used by farm management as a criterion to choose prospective broodstock (candidates were taken from low HPV ponds). Despite such choice, HPV levels in farmed animals were not reduced from 2011 to 2013. Accordingly, the hypothesis that HPV levels can be reduced over time simply by considering average HPV levels in ponds alone is rejected. Different lines of shrimp within the same farm had different HPV levels, but as lines were raised separately, the line differences could be due to either genetic or environmental differences, the latter including possible different rearing effects and differences in vertical transmission. There were large (up to 2-3 LOG fold) differences of HPV levels between families bred and grown together contemporaneously, and the heritability for HPV copy number was estimated to be moderate to large (0.40 ± 0.13). Apart from genetic differences, differences of vertical transmission from dams may contribute to the between family differences, in any case we postulate that selection between families could be an effective method to reduce HPV levels. HPV levels were not genetically correlated with performance traits such as body weight or length, so selection for HPV level should not adversely affect production characteristics. This is the first evidence for an aquacultured species that viral levels, as opposed to survival/resistance to viruses, may have a substantial host genetic component. The heritability reported here for virus copy number was higher that most heritabilities reported for survival to specific pathogens such as white spot, raising the general postulate that selection for virus copy number may be more effective and repeatable than selection for survival to pathogen challenge.


Subject(s)
Parvoviridae , Penaeidae/virology , Ponds/microbiology , Water Microbiology , Animals , Aquaculture/standards , Polymerase Chain Reaction , Shellfish/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...