Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Cogn Neurosci ; 17(7): 1011-7, 2005 Jul.
Article in English | MEDLINE | ID: mdl-16102233

ABSTRACT

The visual system uses the pattern of motion on the retina to analyze the motion of objects in the world, and the motion of the observer him/herself. Distinguishing between retinal motion evoked by movement of the retina in space and retinal motion evoked by movement of objects in the environment is computationally difficult, and the human visual system frequently misinterprets the meaning of retinal motion. In this study, we demonstrate that the visual system of the Rhesus monkey also misinterprets retinal motion. We show that monkeys erroneously report the trajectories of pursuit targets or their own pursuit eye movements during an epoch of smooth pursuit across an orthogonally moving background. Furthermore, when they make saccades to the spatial location of stimuli that flashed early in an epoch of smooth pursuit or fixation, they make large errors that appear to take into account the erroneous smooth eye movement that they report in the first experiment, and not the eye movement that they actually make.


Subject(s)
Attention/physiology , Eye Movements/physiology , Optical Illusions/physiology , Visual Pathways/physiology , Visual Perception/physiology , Animals , Behavior, Animal/physiology , Macaca mulatta , Male , Photic Stimulation/methods , Psychomotor Performance
2.
Anal Chem ; 73(14): 3300-4, 2001 Jul 15.
Article in English | MEDLINE | ID: mdl-11476229

ABSTRACT

Recently, we reported on a new H/D exchange- and matrix-assisted laser desorption/ionization (MALDI)-based technique, termed SUPREX, that can be used to measure the thermodynamic stability of a protein (Ghaemmaghami, S.; Fitzgerald, M. C.; Oas, T. G. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 8296-8301). In the work described here, we report on our efforts to optimize the sensitivity of SUPREX analyses. We describe a new sample handling protocol for SUPREX that involves the use of batch chromatography methods with reversed-phase chromatographic media for the microconcentration and desalting of SUPREX samples. Using ribonuclease A as a model protein system, we demonstrate that our new protocol permits the SUPREX analysis of as little as 10 pmol of protein. This amount of protein is 100-fold less than the amount of material required in our initial SUPREX protocol, and it is 1-2 orders of magnitude less than the amount of material required in conventional spectroscopy-based methods for measuring the thermodynamic stability of a protein.


Subject(s)
Deuterium/chemistry , Hydrogen/chemistry , Proteins/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Enzyme Stability , Microchemistry/methods , Ribonuclease, Pancreatic/chemistry , Sensitivity and Specificity , Thermodynamics
3.
J Neurophysiol ; 84(1): 301-10, 2000 Jul.
Article in English | MEDLINE | ID: mdl-10899205

ABSTRACT

Recent experiments raised the possibility that the lateral intraparietal area (LIP) might be specialized for saccade planning. If this was true, one would expect a decreased sensitivity to irrelevant visual stimuli appearing late in the delay period of a memory-guided delayed-saccade task to a target outside the neurons' receptive fields. We trained two monkeys to perform a standard memory-guided delayed-saccade task and a distractor task in which a stimulus flashed for 200 ms at a predictable time 300-100 ms before the end of the delay period. We used two locations, one in the most active part of the receptive field and another well outside the receptive field. We used six kinds of trials randomly intermixed: simple delayed-saccade trials into or away from the receptive field and distractor trials with saccade target and distractor both in the receptive field, both out of the receptive field, or one at each location. This enabled us to study the response to the distractor as a function of the monkey's preparation of a memory-guided delayed-saccade task. We had assumed that the preparation of a saccade away from the receptive field would result in an attenuation of the response to the distractor, i.e., a distractor at the location of the saccade goal would evoke a greater response than when it appeared at a location far from the saccade goal. Instead we found that neurons exhibited either a normal or an enhanced visual response to the distractor during the memory period when the target flashed outside the receptive field. When the distractor flashed at the location of the saccade target, the response to the distractor was either unchanged or diminished. The response to a distractor away from the target location of a memory-guided saccade was even greater than the response to the same target when it was the target for the memory-guided saccade task. Immediate presaccadic activity did not distinguish between a saccade to the receptive field when there was no distractor and a distractor in the receptive field when the monkey made a saccade elsewhere. Nonetheless the distractor had no significant effect on the saccade latency, accuracy, or velocity despite the brisk response it evoked immediately before the saccade. We suggest that these results are inconsistent with a role for LIP in the specific generation of saccades, but they are consistent with a role for LIP in the generation of visual attention.


Subject(s)
Attention/physiology , Memory/physiology , Neurons/physiology , Parietal Lobe/cytology , Saccades/physiology , Action Potentials/physiology , Animals , Electrophysiology , Macaca mulatta , Male , Parietal Lobe/physiology , Photic Stimulation , Reaction Time/physiology
4.
J Vestib Res ; 6(4): 277-93, 1996.
Article in English | MEDLINE | ID: mdl-8839824

ABSTRACT

The ability of the vestibulo-ocular reflex (VOR) to alter the phase of the motor output relative to the sensory input is examined. Alert cats were trained for 2 h with 0.25 Hz sinusoidal horizontal vestibular and vertical optokinetic rotational stimuli. In each experiment the optokinetic training stimulus was phase shifted by 0 degree, +45 degrees, -45 degrees, or 90 degrees from the vestibular stimulus. Vertical and horizontal eye movements were measured during horizontal rotations in darkness before and after the training procedure. Phase-advance experiments (+45 degrees) produced an adaptive vertical VOR with a mean phase of +28 degrees. After phase-delay experiments (-45 degrees), the adapted VOR had a mean phase of -19 degrees. The peak adaptive change in VOR gain was at or near the 0.25 Hz training frequency in each experimental group, but the gain depended in a complex manner on the testing frequency and the degree of phase shift of the training stimulus. Training with a 45 degrees phase-delayed optokinetic stimulus produced an adaptive vertical VOR with a gain that was relatively higher at frequencies below the training stimulus than at those that were above. Training with a 45 degrees phase-advanced optokinetic stimulus produced an adaptive vertical VOR with a gain that was higher at frequencies above the training frequency than at those that were below. During training with a phase-shifted optokinetic stimulus, adjustment of the relative efficacies of two neural pathways, a velocity pathway and an integrating pathway, could account for gain dependence on testing frequency and phase shift. This was corroborated by a model of the VOR that incorporates parallel velocity and integrating pathways. Data from 45 degrees phase advances were fit by increasing the gain of the velocity versus integrating pathway, whereas 45 degrees phase delay data were fit by decreasing the gain of the direct versus integrating pathway. The models altered the time constants of either the common oculomotor integrator or the velocity storage mechanism.


Subject(s)
Adaptation, Ocular/physiology , Reflex, Vestibulo-Ocular/physiology , Animals , Cats , Electrooculography , Eye Movements/physiology , Head , Motion Perception , Nystagmus, Optokinetic/physiology , Rotation
5.
Brain Res ; 710(1-2): 281-6, 1996 Feb 26.
Article in English | MEDLINE | ID: mdl-8963672

ABSTRACT

Responses of 35 Purkinje cells in decerebrate cats were recorded during 0.5 Hz rotations in 4-11 vertical planes and the horizontal plane to determine their semicircular canal input. Most neurons received convergent input from two canals (21 neurons) or 3 canals (5 neurons). Few Purkinje cells were maximally sensitive to rotations about an axis appropriate to their inferior olivary input as determined by Gerrits and Voogd [15,24,27,49].


Subject(s)
Decerebrate State , Purkinje Cells/physiology , Semicircular Canals/physiology , Animals , Cats , Cell Movement , Neurons/physiology , Rotation , Semicircular Canals/innervation
6.
Brain Res ; 550(1): 137-41, 1991 May 31.
Article in English | MEDLINE | ID: mdl-1888991

ABSTRACT

Vertical and horizontal vestibulo-ocular reflex (VOR) eye movements were recorded in alert cats during horizontal rotation in total darkness before and after a 2 h vestibulo-ocular reflex direction adaptation procedure. Adaptation stimuli were whole body horizontal vestibular rotation coupled to synchronous vertical optokinetic motion. The waveform of the adaptation stimuli was either a sinusoid at 0.05, 0.1, 0.25, 0.5, or 1 Hz, or a sum of sinusoids containing 0.2, 0.3, 0.5, 0.7, 1.1, and 1.7 Hz. Exposure to single frequency stimuli produced adaptive vertical VOR with a gain that was greatest near the training frequency; adaptive VOR phases were advanced below, accurate at, and lagged above the training frequency. Exposure to the multifrequency waveform produced a uniform modest increase in gain across frequencies, with accurate adaptive VOR phase.


Subject(s)
Eye Movements , Reflex, Vestibulo-Ocular , Acclimatization , Animals , Cats , Darkness , Electric Stimulation , Photic Stimulation , Rotation
SELECTION OF CITATIONS
SEARCH DETAIL
...