Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Hum Gene Ther ; 31(21-22): 1155-1168, 2020 11.
Article in English | MEDLINE | ID: mdl-32940068

ABSTRACT

Recently, we established an adeno-associated virus (AAV9) capsid-promoter interaction that directly determined cell-specific gene expression across two synthetic promoters, Cbh and CBA, in the rat striatum. These studies not only expand this capsid-promoter interaction to include another promoter in the rat striatum but also establish AAV capsid-promoter interactions in the nonhuman primate brain. When AAV serotype 9 (AAV9) vectors were injected into the rat striatum, the minimal synthetic promoter JetI drove green fluorescent protein (GFP) gene expression predominantly in oligodendrocytes. However, similar to our previous findings, the insertion of six alanines into VP1/VP2 of the AAV9 capsid (AAV9AU) significantly shifted JetI-driven GFP gene expression to neurons. In addition, previous retrograde tracing studies in the nonhuman primate brain also revealed the existence of a capsid-promoter interaction. When rAAV2-Retro vectors were infused into the frontal eye field (FEF) of rhesus macaques, local gene expression was prominent using either the hybrid chicken beta actin (CAG) or human synapsin (hSyn) promoters. However, only the CAG promoter, not the hSyn promoter, led to gene expression in the ipsilateral claustrum and contralateral FEF. Conversely, infusion of rAAV2-retro-hSyn vectors, but not rAAV2-retro-CAG, into the macaque superior colliculus led to differential and selective retrograde gene expression in cerebellotectal afferent cells. Clearly, this differential promoter/capsid expression profile could not be attributed to promoter inactivation from retrograde transport of the rAAV2-Retro vector. In summary, we document the potential for AAV capsid/promoter interactions to impact cell-specific gene expression across species, experimental manipulations, and engineered capsids, independent of capsid permissivity.


Subject(s)
Brain/metabolism , Capsid/metabolism , Dependovirus/metabolism , Green Fluorescent Proteins/metabolism , Promoter Regions, Genetic , Transgenes , Animals , Dependovirus/genetics , Macaca mulatta , Male , Rats , Rats, Sprague-Dawley
2.
Mol Ther ; 28(5): 1373-1380, 2020 05 06.
Article in English | MEDLINE | ID: mdl-32213322

ABSTRACT

Cell-selective gene expression comprises a critical element of many adeno-associated virus (AAV) vector-based gene therapies, and to date achieving this goal has focused on AAV capsid engineering, cell-specific promoters, or cell-specific enhancers. Recently, we discovered that the capsid of AAV9 exerts a differential influence on constitutive promoters of sufficient magnitude to alter cell type gene expression in the rat CNS. For AAV9 vectors chicken ß-actin (CBA) promoter-driven gene expression exhibited a dominant neuronal gene expression in the rat striatum. Surprisingly, for otherwise identical AAV9 vectors, the truncated CBA hybrid (CBh) promoter shifted gene expression toward striatal oligodendrocytes. In contrast, AAV2 vector gene expression was restricted to striatal neurons, regardless of the constitutive promoter used. Furthermore, a six-glutamate residue insertion immediately after the VP2 start residue shifted CBA-driven cellular gene expression from neurons to oligodendrocytes. Conversely, a six-alanine insertion in the same AAV9 capsid region reversed the CBh-mediated oligodendrocyte expression back to neurons without changing AAV9 capsid access to oligodendrocytes. Given the preponderance of AAV9 in ongoing clinical trials and AAV capsid engineering, this AAV9 capsid-promoter interaction reveals a previously unknown novel contribution to cell-selective AAV-mediated gene expression in the CNS.


Subject(s)
Capsid Proteins/genetics , Capsid/metabolism , Corpus Striatum/metabolism , Dependovirus/genetics , Gene Expression , Neurons/metabolism , Promoter Regions, Genetic , Animals , Genetic Therapy , Genetic Vectors , HEK293 Cells , Humans , Male , Rats , Rats, Sprague-Dawley , Transduction, Genetic , Transgenes
3.
Mol Ther ; 25(4): 928-934, 2017 04 05.
Article in English | MEDLINE | ID: mdl-28202388

ABSTRACT

Recent advances suggest that in vivo reprogramming of endogenous cell populations provides a viable alternative for neuron replacement. Astrocytes and oligodendrocyte precursor cells can be induced to transdifferentiate into neurons in the CNS, but, in these instances, reprogramming requires either transgenic mice or retroviral-mediated gene expression. We developed a microRNA (miRNA)-GFP construct that in vitro significantly reduced the expression of polypyrimidine tract-binding protein, and, subsequently, we packaged this construct in a novel oligodendrocyte preferring adeno-associated virus vector. Ten days after rat striatal transduction, the vast majority of the GFP-positive cells were oligodendrocytes, but 6 weeks to 6 months later, the majority of GFP-positive cells exhibited neuronal morphology and co-localized with the neuronal marker NeuN. Patch-clamp studies on striatal slices established that the GFP-positive cells exhibited electrophysiological properties indicative of mature neurons, such as spontaneous action potentials and spontaneous inhibitory postsynaptic currents. Also, 3 months after striatal vector administration, GFP-positive terminals in the ipsilateral globus pallidus or substantia nigra retrogradely transported fluorescent beads back to GFP-positive striatal cell bodies, indicating the presence of functional presynaptic terminals. Thus, this viral vector approach provides a potential means to harness resident oligodendrocytes as an endogenous source for in vivo neuronal replacement.


Subject(s)
Cell Transdifferentiation/genetics , Cellular Reprogramming/genetics , Corpus Striatum/cytology , Genetic Vectors/genetics , Neurons/cytology , Oligodendroglia/cytology , Animals , Cell Line , Dependovirus/genetics , Humans , Neurons/metabolism , Oligodendroglia/metabolism , RNA Interference , RNA, Small Interfering , Rats
4.
EMBO J ; 34(4): 531-43, 2015 Feb 12.
Article in English | MEDLINE | ID: mdl-25555795

ABSTRACT

Eukaryotic replication origins are defined by the ORC-dependent loading of the Mcm2-7 helicase complex onto chromatin in G1. Paradoxically, there is a vast excess of Mcm2-7 relative to ORC assembled onto chromatin in G1. These excess Mcm2-7 complexes exhibit little co-localization with ORC or replication foci and can function as dormant origins. We dissected the mechanisms regulating the assembly and distribution of the Mcm2-7 complex in the Drosophila genome. We found that in the absence of cyclin E/Cdk2 activity, there was a 10-fold decrease in chromatin-associated Mcm2-7 relative to the levels found at the G1/S transition. The minimal amounts of Mcm2-7 loaded in the absence of cyclin E/Cdk2 activity were strictly localized to ORC binding sites. In contrast, cyclin E/Cdk2 activity was required for maximal loading of Mcm2-7 and a dramatic genome-wide reorganization of the distribution of Mcm2-7 that is shaped by active transcription. Thus, increasing cyclin E/Cdk2 activity over the course of G1 is not only critical for Mcm2-7 loading, but also for the distribution of the Mcm2-7 helicase prior to S-phase entry.


Subject(s)
Cell Cycle/physiology , Drosophila Proteins/metabolism , Minichromosome Maintenance Proteins/metabolism , Animals , Blotting, Western , Cell Cycle/genetics , Cells, Cultured , Drosophila , Drosophila Proteins/genetics , Fluorescent Antibody Technique , Minichromosome Maintenance Proteins/genetics , RNA Interference
5.
Science ; 330(6012): 1787-97, 2010 Dec 24.
Article in English | MEDLINE | ID: mdl-21177974

ABSTRACT

To gain insight into how genomic information is translated into cellular and developmental programs, the Drosophila model organism Encyclopedia of DNA Elements (modENCODE) project is comprehensively mapping transcripts, histone modifications, chromosomal proteins, transcription factors, replication proteins and intermediates, and nucleosome properties across a developmental time course and in multiple cell lines. We have generated more than 700 data sets and discovered protein-coding, noncoding, RNA regulatory, replication, and chromatin elements, more than tripling the annotated portion of the Drosophila genome. Correlated activity patterns of these elements reveal a functional regulatory network, which predicts putative new functions for genes, reveals stage- and tissue-specific regulators, and enables gene-expression prediction. Our results provide a foundation for directed experimental and computational studies in Drosophila and related species and also a model for systematic data integration toward comprehensive genomic and functional annotation.


Subject(s)
Chromatin , Drosophila melanogaster/genetics , Gene Regulatory Networks , Genome, Insect , Molecular Sequence Annotation , Animals , Binding Sites , Chromatin/genetics , Chromatin/metabolism , Computational Biology/methods , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/growth & development , Drosophila melanogaster/metabolism , Epigenesis, Genetic , Gene Expression Regulation , Genes, Insect , Genomics/methods , Histones/metabolism , Nucleosomes/genetics , Nucleosomes/metabolism , Promoter Regions, Genetic , RNA, Small Untranslated/genetics , RNA, Small Untranslated/metabolism , Transcription Factors/metabolism , Transcription, Genetic
6.
PLoS Biol ; 8(2): e1000320, 2010 Feb 23.
Article in English | MEDLINE | ID: mdl-20186269

ABSTRACT

Extensive departures from balanced gene dose in aneuploids are highly deleterious. However, we know very little about the relationship between gene copy number and expression in aneuploid cells. We determined copy number and transcript abundance (expression) genome-wide in Drosophila S2 cells by DNA-Seq and RNA-Seq. We found that S2 cells are aneuploid for >43 Mb of the genome, primarily in the range of one to five copies, and show a male genotype ( approximately two X chromosomes and four sets of autosomes, or 2X;4A). Both X chromosomes and autosomes showed expression dosage compensation. X chromosome expression was elevated in a fixed-fold manner regardless of actual gene dose. In engineering terms, the system "anticipates" the perturbation caused by X dose, rather than responding to an error caused by the perturbation. This feed-forward regulation resulted in precise dosage compensation only when X dose was half of the autosome dose. Insufficient compensation occurred at lower X chromosome dose and excessive expression occurred at higher doses. RNAi knockdown of the Male Specific Lethal complex abolished feed-forward regulation. Both autosome and X chromosome genes show Male Specific Lethal-independent compensation that fits a first order dose-response curve. Our data indicate that expression dosage compensation dampens the effect of altered DNA copy number genome-wide. For the X chromosome, compensation includes fixed and dose-dependent components.


Subject(s)
Aneuploidy , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila/genetics , Drosophila/metabolism , Animals , Blotting, Western , Cell Line , Chromatin Immunoprecipitation , Comparative Genomic Hybridization , Dosage Compensation, Genetic/genetics , Gene Expression Regulation , Male , Oligonucleotide Array Sequence Analysis , RNA Interference , Sequence Analysis, DNA , X Chromosome/genetics
7.
Genome Res ; 20(2): 201-11, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19996087

ABSTRACT

The origin recognition complex (ORC) is an essential DNA replication initiation factor conserved in all eukaryotes. In Saccharomyces cerevisiae, ORC binds to specific DNA elements; however, in higher eukaryotes, ORC exhibits little sequence specificity in vitro or in vivo. We investigated the genome-wide distribution of ORC in Drosophila and found that ORC localizes to specific chromosomal locations in the absence of any discernible simple motif. Although no clear sequence motif emerged, we were able to use machine learning approaches to accurately discriminate between ORC-associated sequences and ORC-free sequences based solely on primary sequence. The complex sequence features that define ORC binding sites are highly correlated with nucleosome positioning signals and likely represent a preferred nucleosomal landscape for ORC association. Open chromatin appears to be the underlying feature that is deterministic for ORC binding. ORC-associated sequences are enriched for the histone variant, H3.3, often at transcription start sites, and depleted for bulk nucleosomes. The density of ORC binding along the chromosome is reflected in the time at which a sequence replicates, with early replicating sequences having a high density of ORC binding. Finally, we found a high concordance between sites of ORC binding and cohesin loading, suggesting that, in addition to DNA replication, ORC may be required for the loading of cohesin on DNA in Drosophila.


Subject(s)
Cell Cycle Proteins/metabolism , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Origin Recognition Complex/metabolism , Animals , Cell Line , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Promoter Regions, Genetic , Sequence Analysis, DNA , Cohesins
8.
Mod Pathol ; 21(5): 525-30, 2008 May.
Article in English | MEDLINE | ID: mdl-18327212

ABSTRACT

Melanoma is responsible for an estimated 62,000 new American cancer diagnoses and is projected to cause nearly 8000 deaths in 2008 alone. Although the histogenesis of the tumor is not well understood, it is thought to originate from a rare melanocyte stem cell that resides in the skin. The transcription factor PAX3 has a well-established role in the development of melanocytes during embryogenesis, and has recently been characterized as a molecular switch in the mature melanocyte. Based on this function, PAX3 promotes a melanocytic phenotype but blocks terminal differentiation. This mechanism may also contribute to the uncontrolled cell growth and loss of terminal differentiation in melanomas. Here, we find PAX3 expression in 8/8 melanoma cell lines. We also find that PAX3 is commonly expressed in primary melanoma samples (21/58) but significantly less frequently in benign pigmented lesions (9/75). Further analysis of our melanoma set revealed that PAX3 expression is strongly correlated with younger patients with low or no evidence of sun damage. Our data suggest that PAX3-expressing melanomas may be less environmentally dependent and more genetically linked.


Subject(s)
Biomarkers, Tumor/analysis , Melanoma/metabolism , Nevus, Pigmented/metabolism , Paired Box Transcription Factors/biosynthesis , Skin Neoplasms/metabolism , Animals , Blotting, Western , Cell Line, Tumor , Gene Expression , Humans , Melanoma/genetics , Mice , Nevus, Pigmented/genetics , PAX3 Transcription Factor , Reverse Transcriptase Polymerase Chain Reaction , Skin Neoplasms/genetics , Sunlight/adverse effects
9.
Mol Carcinog ; 47(2): 148-56, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17849422

ABSTRACT

Tumors of the exocrine pancreas are a major cause of cancer death and have among the poorest prognosis of any malignancy. Following the "cancer stem cell hypothesis," where tumors are believed to originate in tissue specific stem cells, we screened primary ductal pancreatic carcinomas and cell lines for the expression of possible stem cell factors. We find 32/46 (70%) of primary tumors and 9/10 (90%) of cell lines express PAX6. PAX6 is a transcription factor expressed throughout the pancreatic bud during embryogenesis but not in the mature exocrine pancreas. PAX proteins have also been implicated in maintaining stem cells in a committed but undifferentiated state but a role for PAX proteins in putative pancreas stem cells is not known. We induced a pancreatic carcinoma cell line, Panc-1, to differentiate by transfecting wild-type p53 and treating the cells with differentiation agents gastrin or butyrate. This treatment induces cells to terminally differentiate into a growth-arrested cell with neurite-like processes, express the terminal differentiation marker somatostatin and downregulate PAX6. This phenotype can be replicated by directly inhibiting PAX6 expression. These data support a model where PAX proteins are aberrantly expressed in tumors and downregulation leads to differentiation.


Subject(s)
Adenocarcinoma/genetics , Cell Differentiation/genetics , Eye Proteins/genetics , Homeodomain Proteins/genetics , Paired Box Transcription Factors/genetics , Pancreatic Neoplasms/genetics , Repressor Proteins/genetics , 3T3 Cells , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Animals , Base Sequence , Cell Division , Cell Line, Tumor , DNA Primers , Mice , PAX6 Transcription Factor , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Rats , Tumor Suppressor Protein p53/metabolism
10.
Biochem Pharmacol ; 73(1): 1-14, 2007 Jan 01.
Article in English | MEDLINE | ID: mdl-16904651

ABSTRACT

PAX proteins function as transcription factors and play an essential role in organogenesis during embryonic development in regulating cell proliferation and self-renewal, resistance to apoptosis, migration of embryonic precursor cells, and the coordination of specific differentiation programs. Recent studies have also discovered a role for PAX proteins in specific stem cell or progenitor cell populations, including melanocytes, muscle, and B-cells. The normal functions of the PAX proteins, including apoptosis resistance and repression of terminal differentiation, may be subverted during the progression of a number of specific malignancies. This is supported by the fact that expression of PAX proteins is dysregulated in several different types of tumors, although the precise roles for PAX proteins in cancer are not clearly understood. An emerging hypothesis is that PAX proteins play an essential role in maintaining tissue specific stem cells by inhibiting terminal differentiation and apoptosis and that these functional characteristics may facilitate the development and progression of specific cancers. In this review, we provide a general background to the PAX protein family and focus on specific cells and tissues and the role PAX proteins play within these tissues in terms of development, mature tissue maintenance, and expression in tumors. Understanding the normal developmental pathways regulated by PAX proteins may shed light on potentially parallel pathways shared in tumors, and ultimately result in defining new molecular targets and signaling pathways for the development of novel anti-cancer therapies.


Subject(s)
Embryonic Development/physiology , Neoplasms/physiopathology , Paired Box Transcription Factors/physiology , Disease Progression , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...