Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Psychiatry ; 26(6): 2013-2024, 2021 06.
Article in English | MEDLINE | ID: mdl-32346159

ABSTRACT

Defects in histone methyltransferases (HMTs) are major contributing factors in neurodevelopmental disorders (NDDs). Heterozygous variants of SETD1A involved in histone H3 lysine 4 (H3K4) methylation were previously identified in individuals with schizophrenia. Here, we define the clinical features of the Mendelian syndrome associated with haploinsufficiency of SETD1A by investigating 15 predominantly pediatric individuals who all have de novo SETD1A variants. These individuals present with a core set of symptoms comprising global developmental delay and/or intellectual disability, subtle facial dysmorphisms, behavioral and psychiatric problems. We examined cellular phenotypes in three patient-derived lymphoblastoid cell lines with three variants: p.Gly535Alafs*12, c.4582-2_4582delAG, and p.Tyr1499Asp. These patient cell lines displayed DNA damage repair defects that were comparable to previously observed RNAi-mediated depletion of SETD1A. This suggested that these variants, including the p.Tyr1499Asp in the catalytic SET domain, behave as loss-of-function (LoF) alleles. Previous studies demonstrated a role for SETD1A in cell cycle control and differentiation. However, individuals with SETD1A variants do not show major structural brain defects or severe microcephaly, suggesting that defective proliferation and differentiation of neural progenitors is unlikely the single underlying cause of the disorder. We show here that the Drosophila melanogaster SETD1A orthologue is required in postmitotic neurons of the fly brain for normal memory, suggesting a role in post development neuronal function. Together, this study defines a neurodevelopmental disorder caused by dominant de novo LoF variants in SETD1A and further supports a role for H3K4 methyltransferases in the regulation of neuronal processes underlying normal cognitive functioning.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Animals , Child , Drosophila , Drosophila melanogaster , Haploinsufficiency/genetics , Histone-Lysine N-Methyltransferase/genetics , Humans , Intellectual Disability/genetics , Neurodevelopmental Disorders/genetics
2.
Am J Med Genet A ; 185(1): 234-237, 2021 01.
Article in English | MEDLINE | ID: mdl-33098248

ABSTRACT

PBX1 encodes the pre-B cell leukemia homeobox transcription factor, a three amino acid loop extension (TALE) homeodomain transcription factor, which forms nuclear complexes with other TALE class homeodomain proteins that ultimately regulate target genes controlling organ patterning during embryogenesis. Heterozygous de novo pathogenic variants in PBX1 resulting in haploinsufficiency are associated with congenital anomalies of the kidneys and urinary tract, most commonly renal hypoplasia, as well as anomalies involving the external ear, branchial arch, heart, and genitalia, and they cause intellectual disability and developmental delay. Affected individuals described thus far have had de novo variants. Here, we report three related individuals with an inherited pathogenic intragenic PBX1 deletion with variable clinical features typical for this syndrome.


Subject(s)
Coloboma/genetics , Genetic Predisposition to Disease , Pre-B-Cell Leukemia Transcription Factor 1/genetics , Renal Insufficiency/genetics , Urogenital Abnormalities/genetics , Vesico-Ureteral Reflux/genetics , Adult , Child , Coloboma/diagnosis , Coloboma/pathology , Developmental Disabilities/diagnosis , Developmental Disabilities/genetics , Developmental Disabilities/pathology , Female , Haploinsufficiency/genetics , Humans , Infant , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Intellectual Disability/pathology , Male , Mutation/genetics , Phenotype , Renal Insufficiency/diagnosis , Renal Insufficiency/pathology , Urogenital Abnormalities/pathology , Vesico-Ureteral Reflux/diagnosis , Vesico-Ureteral Reflux/pathology
3.
Sci Adv ; 6(49)2020 12.
Article in English | MEDLINE | ID: mdl-33268356

ABSTRACT

Although somatic mutations in Histone 3.3 (H3.3) are well-studied drivers of oncogenesis, the role of germline mutations remains unreported. We analyze 46 patients bearing de novo germline mutations in histone 3 family 3A (H3F3A) or H3F3B with progressive neurologic dysfunction and congenital anomalies without malignancies. Molecular modeling of all 37 variants demonstrated clear disruptions in interactions with DNA, other histones, and histone chaperone proteins. Patient histone posttranslational modifications (PTMs) analysis revealed notably aberrant local PTM patterns distinct from the somatic lysine mutations that cause global PTM dysregulation. RNA sequencing on patient cells demonstrated up-regulated gene expression related to mitosis and cell division, and cellular assays confirmed an increased proliferative capacity. A zebrafish model showed craniofacial anomalies and a defect in Foxd3-derived glia. These data suggest that the mechanism of germline mutations are distinct from cancer-associated somatic histone mutations but may converge on control of cell proliferation.


Subject(s)
Histones , Neurodegenerative Diseases , Animals , Forkhead Transcription Factors/genetics , Germ-Line Mutation , Histones/genetics , Histones/metabolism , Humans , Neurodegenerative Diseases/genetics , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/metabolism
4.
Eur J Hum Genet ; 26(1): 64-74, 2018 01.
Article in English | MEDLINE | ID: mdl-29180823

ABSTRACT

Whole-gene duplications and missense variants in the HUWE1 gene (NM_031407.6) have been reported in association with intellectual disability (ID). Increased gene dosage has been observed in males with non-syndromic mild to moderate ID with speech delay. Missense variants reported previously appear to be associated with severe ID in males and mild or no ID in obligate carrier females. Here, we report the largest cohort of patients with HUWE1 variants, consisting of 14 females and 7 males, with 15 different missense variants and one splice site variant. Clinical assessment identified common clinical features consisting of moderate to profound ID, delayed or absent speech, short stature with small hands and feet and facial dysmorphism consisting of a broad nasal tip, deep set eyes, epicanthic folds, short palpebral fissures, and a short philtrum. We describe for the first time that females can be severely affected, despite preferential inactivation of the affected X chromosome. Three females with the c.329 G > A p.Arg110Gln variant, present with a phenotype of mild ID, specific facial features, scoliosis and craniosynostosis, as reported previously in a single patient. In these females, the X inactivation pattern appeared skewed in favour of the affected transcript. In summary, HUWE1 missense variants may cause syndromic ID in both males and females.


Subject(s)
Genes, Dominant , Genetic Diseases, X-Linked/genetics , Intellectual Disability/genetics , Tumor Suppressor Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Adolescent , Adult , Child , Female , Genetic Diseases, X-Linked/pathology , Humans , Intellectual Disability/pathology , Male , Mutation, Missense , Syndrome
5.
Am J Hum Genet ; 101(6): 995-1005, 2017 Dec 07.
Article in English | MEDLINE | ID: mdl-29198722

ABSTRACT

A recurrent de novo missense variant within the C-terminal Sin3-like domain of ZSWIM6 was previously reported to cause acromelic frontonasal dysostosis (AFND), an autosomal-dominant severe frontonasal and limb malformation syndrome, associated with neurocognitive and motor delay, via a proposed gain-of-function effect. We present detailed phenotypic information on seven unrelated individuals with a recurrent de novo nonsense variant (c.2737C>T [p.Arg913Ter]) in the penultimate exon of ZSWIM6 who have severe-profound intellectual disability and additional central and peripheral nervous system symptoms but an absence of frontonasal or limb malformations. We show that the c.2737C>T variant does not trigger nonsense-mediated decay of the ZSWIM6 mRNA in affected individual-derived cells. This finding supports the existence of a truncated ZSWIM6 protein lacking the Sin3-like domain, which could have a dominant-negative effect. This study builds support for a key role for ZSWIM6 in neuronal development and function, in addition to its putative roles in limb and craniofacial development, and provides a striking example of different variants in the same gene leading to distinct phenotypes.


Subject(s)
DNA-Binding Proteins/genetics , Intellectual Disability/genetics , Neurocognitive Disorders/genetics , Central Nervous System/abnormalities , Central Nervous System/embryology , Codon, Nonsense/genetics , High-Throughput Nucleotide Sequencing , Humans , Limb Deformities, Congenital/genetics , Mandibulofacial Dysostosis/genetics , Peripheral Nervous System/abnormalities , Peripheral Nervous System/enzymology
6.
Genome Med ; 9(1): 73, 2017 08 14.
Article in English | MEDLINE | ID: mdl-28807008

ABSTRACT

BACKGROUND: De novo missense variants in CDK13 have been described as the cause of syndromic congenital heart defects in seven individuals ascertained from a large congenital cardiovascular malformations cohort. We aimed to further define the phenotypic and molecular spectrum of this newly described disorder. METHODS: To minimise ascertainment bias, we recruited nine additional individuals with CDK13 pathogenic variants from clinical and research exome laboratory sequencing cohorts. Each individual underwent dysmorphology exam and comprehensive medical history review. RESULTS: We demonstrate greater than expected phenotypic heterogeneity, including 33% (3/9) of individuals without structural heart disease on echocardiogram. There was a high penetrance for a unique constellation of facial dysmorphism and global developmental delay, as well as less frequently seen renal and sacral anomalies. Two individuals had novel CDK13 variants (p.Asn842Asp, p.Lys734Glu), while the remaining seven unrelated individuals had a recurrent, previously published p.Asn842Ser variant. Summary of all variants published to date demonstrates apparent restriction of pathogenic variants to the protein kinase domain with clustering in the ATP and magnesium binding sites. CONCLUSIONS: Here we provide detailed phenotypic and molecular characterisation of individuals with pathogenic variants in CDK13 and propose management guidelines based upon the estimated prevalence of anomalies identified.


Subject(s)
CDC2 Protein Kinase/genetics , Face/abnormalities , Heart Defects, Congenital/metabolism , Intellectual Disability/metabolism , Mutation , Phenotype , Adolescent , Adult , Child , Child, Preschool , Female , Heart Defects, Congenital/genetics , Humans , Infant , Intellectual Disability/genetics , Male , Syndrome
7.
Am J Med Genet A ; 170(9): 2237-47, 2016 09.
Article in English | MEDLINE | ID: mdl-27264673

ABSTRACT

Noonan syndrome is a rasopathy caused by mutations in multiple genes encoding components of the RAS/MAPK pathway. Despite its variable phenotype, limited genotype-phenotype correlations exist. Noonan syndrome with loose anagen hair (NS-LAH) is characterized by its distinctive hair anomalies, developmental differences, and structural brain abnormalities and is caused by a single recurrent missense SHOC2 mutation. SHOC2 forms a complex with protein phosphatase 1 (PP1C). Protein phosphatases counterbalance kinases and control activation of signaling proteins, such as the mitogen-activated protein kinases of the RAS/MAPK pathway. Here we report four patients with de novo missense mutations in protein phosphatase one catalytic subunit beta (PPP1CB), sharing a recognizable phenotype. Three individuals had the recurrent PPP1CB c.146G>C, p.Pro49Arg mutation, the fourth had a c.166G>C, p.Ala56Pro change. All had relative or absolute macrocephaly, low-set and posteriorly angulated ears, and developmental delay. Slow growing and/or sparse hair and/or an unruly hair texture was present in all. Three individuals had feeding difficulties requiring feeding tubes. One of two males had cryptorchidism, another had pectus excavatum. Short stature was present in three. A female with the recurrent mutation had a Dandy-Walker malformation and optic nerve hypoplasia. Mild ventriculomegaly occurred in all, cerebellar tonsillar ectopia was seen in two and progressed to Chiari 1 malformation in one individual. Based on the combination of phenotypic findings and PPP1CB's effect on RAF dephosphorylation within the RAS/MAPK pathway, this novel condition can be considered a rasopathy, most similar to NS-LAH. Collectively, these mutations meet the standardized criteria for pathogenicity. © 2016 Wiley Periodicals, Inc.


Subject(s)
Loose Anagen Hair Syndrome/diagnosis , Loose Anagen Hair Syndrome/genetics , Mutation, Missense , Noonan Syndrome/diagnosis , Noonan Syndrome/genetics , Protein Phosphatase 1/genetics , Brain/pathology , Child , Child, Preschool , Dandy-Walker Syndrome/diagnosis , Dandy-Walker Syndrome/genetics , Diagnostic Imaging , Exome , Facies , Female , Genetic Association Studies , Genetic Testing , High-Throughput Nucleotide Sequencing , Humans , Loose Anagen Hair Syndrome/metabolism , Male , Noonan Syndrome/metabolism , Phenotype , Young Adult , ras Proteins/metabolism
8.
Genet Med ; 18(4): 309-15, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26248010

ABSTRACT

PURPOSE: Maternal uniparental disomy of chromosome 20 (UPD(20)mat) has been reported in only four patients, three of whom also had mosaicism for complete or partial trisomy of chromosome 20. We sought to evaluate the clinical significance of isolated UPD(20)mat in eight individuals. METHODS: We evaluated phenotypic and genomic findings of a series of eight new patients with UPD(20)mat. RESULTS: All eight individuals with UPD(20)mat had intrauterine growth restriction, short stature, and prominent feeding difficulties with failure to thrive. As a common feature, they often required gastric tube feeds. Genomic data in most patients are indicative of UPD as a result of trisomy rescue after meiosis II nondisjunction. CONCLUSION: We describe the first natural history of the disorder and the results of therapeutic interventions, including the frequent requirement of direct gastric feedings only during the first few years of life, and propose that growth hormone supplementation is probably safe and effective for this condition. We suggest that UPD(20)mat can be regarded as a new imprinting disorder and its identification requires specialized molecular testing, which should be performed in patients with early-onset idiopathic isolated growth failure.Genet Med 18 4, 309-315.


Subject(s)
Chromosomes, Human, Pair 20 , Growth Disorders/diagnosis , Growth Disorders/genetics , Uniparental Disomy/diagnosis , Uniparental Disomy/genetics , Child , Child, Preschool , Facies , Female , Genomic Imprinting , Genotype , Growth Disorders/drug therapy , Human Growth Hormone/deficiency , Human Growth Hormone/therapeutic use , Humans , Infant , Male , Microsatellite Repeats , Mosaicism , Oligonucleotide Array Sequence Analysis , Phenotype , Polymorphism, Single Nucleotide
9.
J Neuropathol Exp Neurol ; 73(5): 425-41, 2014 May.
Article in English | MEDLINE | ID: mdl-24709677

ABSTRACT

Dystroglycanopathies are a subtype of congenital muscular dystrophy of varying severity that can affect the brain and eyes, ranging from Walker-Warburg syndrome with severe brain malformation to milder congenital muscular dystrophy presentations with affected or normal cognition and later onset. Mutations in dystroglycanopathy genes affect a specific glycoepitope on α-dystroglycan; of the 14 genes implicated to date, LARGE encodes the glycosyltransferase that adds the final xylose and glucuronic acid, allowing α-dystroglycan to bind ligands, including laminin 211 and neurexin. Only 11 patients with LARGE mutations have been reported. We report the clinical, neuroimaging, and genetic features of 4 additional patients. We confirm that gross deletions and rearrangements are important mutational mechanisms for LARGE. The brain abnormalities overshadowed the initially mild muscle phenotype in all 4 patients. We present the first comprehensive postnatal neuropathology of the brain, spinal cord, and eyes of a patient with a homozygous LARGE mutation at Cys443. In this patient, polymicrogyria was the predominant cortical malformation; densely festooned polymicrogyria were overlaid by a continuous agyric surface. In view of the severity of these abnormalities, Cys443 may be a functionally important residue in the LARGE protein, whereas the mutation p.Glu509Lys of Patient 1 in this study may confer a milder phenotype. Overall, these results expand the clinical and genetic spectrum of dystroglycanopathy.


Subject(s)
Dystroglycans/genetics , Muscular Dystrophies/genetics , Muscular Dystrophies/pathology , Mutation/genetics , N-Acetylglucosaminyltransferases/genetics , Child , Child, Preschool , Fatal Outcome , Female , Homozygote , Humans , Infant , Male , Muscular Dystrophies/diagnosis , Pedigree , Polymorphism, Single Nucleotide/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...