Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
J R Soc Interface ; 20(205): 20230332, 2023 08.
Article in English | MEDLINE | ID: mdl-37553991

ABSTRACT

The stalked barnacle Pollicipes pollicipes uses a multi-protein cement to adhere to highly varied substrates in marine environments. We investigated the morphology and adhesiveness of a component 19 kDa protein in barnacle cement gland- and seawater-like conditions, using transmission electron microscopy and state-of-the art scanning probe techniques. The protein formed amyloid fibres after 5 days in gland-like but not seawater conditions. After 7-11 days, the fibres self-assembled under gland-like conditions into large intertwined fibrils of up to 10 µm in length and 200 nm in height, with a distinctive twisting of fibrils evident after 11 days. Atomic force microscopy (AFM)-nanodynamic mechanical analysis of the protein in wet conditions determined E' (elasticity), E'' (viscosity) and tan δ values of 2.8 MPa, 1.2 MPa and 0.37, respectively, indicating that the protein is a soft and viscoelastic material, while the adhesiveness of the unassembled protein and assembled fibres, measured using peak force quantitative nanomechanical mapping, was comparable to that of the commercial adhesive Cell-Tak™. The study provides a comprehensive insight into the nanomechanical and viscoelastic properties of the barnacle cement protein and its self-assembled fibres under native-like conditions and may have application in the design of amyloid fibril-based biomaterials or bioadhesives.


Subject(s)
Adhesives , Thoracica , Animals , Adhesives/chemistry , Thoracica/chemistry , Adhesiveness , Amyloid/chemistry , Microscopy, Atomic Force
2.
Polymers (Basel) ; 13(19)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34641137

ABSTRACT

Natural polymers, based on proteins or polysaccharides, have attracted increasing interest in recent years due to their broad potential uses in biomedicine. The chemical stability, structural versatility, biocompatibility and high availability of these materials lend them to diverse applications in areas such as tissue engineering, drug delivery and wound healing. Biomaterials purified from animal or plant sources have also been engineered to improve their structural properties or promote interactions with surrounding cells and tissues for improved in vivo performance, leading to novel applications as implantable devices, in controlled drug release and as surface coatings. This review describes biomaterials derived from and inspired by natural proteins and polysaccharides and highlights their promise across diverse biomedical fields. We outline current therapeutic applications of these nature-based materials and consider expected future developments in identifying and utilising innovative biomaterials in new biomedical applications.

3.
Mar Environ Res ; 169: 105344, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34015675

ABSTRACT

Data that can be used to monitor biodiversity through time are essential for conservation and management. The reef-forming worm, Sabellaria alveolata (L. 1767) is currently classed as 'Data Deficient' due to an imbalance in the spread of data on its distribution. Little is known about the distribution of this species around Ireland. Using data archaeology, we collated past and present distribution records and discovered that S. alveolata has a discontinuous distribution with large gaps between populations. Many regions lack data and should be targeted for sampling. Biodiversity surveys revealed that S. alveolata supported diverse epibiotic algal communities. Retrograding (declining) reefs supported greater infaunal diversity than prograding (growing) reefs or sand, suggesting that S. alveolata is a dynamic ecosystem engineer that has a lasting legacy effect. Similar research should be carried out for other Data Deficient species, habitats and regions. Such data are invaluable resources for management and conservation.


Subject(s)
Alveolata , Polychaeta , Animals , Biodiversity , Conservation of Natural Resources , Coral Reefs , Ecosystem , Ireland
4.
Biol Rev Camb Philos Soc ; 96(3): 1051-1075, 2021 06.
Article in English | MEDLINE | ID: mdl-33594824

ABSTRACT

Many aquatic invertebrates are associated with surfaces, using adhesives to attach to the substratum for locomotion, prey capture, reproduction, building or defence. Their intriguing and sophisticated biological glues have been the focus of study for decades. In all but a couple of specific taxa, however, the precise mechanisms by which the bioadhesives stick to surfaces underwater and (in many cases) harden have proved to be elusive. Since the bulk components are known to be based on proteins in most organisms, the opportunities provided by advancing 'omics technologies have revolutionised bioadhesion research. Time-consuming isolation and analysis of single molecules has been either replaced or augmented by the generation of massive data sets that describe the organism's translated genes and proteins. While these new approaches have provided resources and opportunities that have enabled physiological insights and taxonomic comparisons that were not previously possible, they do not provide the complete picture and continued multi-disciplinarity is essential. This review covers the various ways in which 'omics have contributed to our understanding of adhesion by aquatic invertebrates, with new data to illustrate key points. The associated challenges are highlighted and priorities are suggested for future research.


Subject(s)
Invertebrates , Reproduction , Animals , Invertebrates/genetics
5.
Ecol Evol ; 10(13): 6819-6832, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32724553

ABSTRACT

AIM: Kelp forests worldwide are important marine ecosystems that foster high primary to secondary productivity and multiple ecosystem services. These ecosystems are increasingly under threat from extreme storms, changing ocean temperatures, harvesting, and greater herbivore pressure at regional and global scales, necessitating urgent documentation of their historical to present-day distributions. Species range shifts to higher latitudes have already been documented in some species that dominate subtidal habitats within Europe. Very little is known about kelp forest ecosystems in Ireland, where rocky coastlines are dominated by Laminaria hyperborea. In order to rectify this substantial knowledge gap, we compiled historical records from an array of sources to present historical distribution, kelp and kelp forest recording effort over time, and present rational for the monitoring of kelp habitats to better understand ecosystem resilience. LOCATION: Ireland (Northern Ireland and Éire). METHODS: Herbaria, literature from the Linnaean society dating back to late 1700s, journal articles, government reports, and online databases were scoured for information on L. hyperborea. Information about kelp ecosystems was solicited from dive clubs and citizen science groups that are active along Ireland's coastlines. RESULTS: Data were used to create distribution maps and analyze methodology and technology used to record L. hyperborea presence and kelp ecosystems within Ireland. We discuss the recent surge in studies on Irish kelp ecosystems, fauna associated with kelp ecosystems that may be used as indicators of ecosystem health and suggest methodologies for continued monitoring. MAIN CONCLUSIONS: While there has been a steady increase in recording effort of the dominant subtidal kelp forest species, L. hyperborea, only recently have studies begun to address other important eco-evolutionary processes at work in kelp forests including connectivity among kelp populations in Ireland. Further monitoring, using suggested methodologies, is required to better understand the resilience of kelp ecosystems in Ireland.

6.
Sci Rep ; 10(1): 3387, 2020 02 25.
Article in English | MEDLINE | ID: mdl-32099047

ABSTRACT

The extent to which commercially important Nephrops norvegicus lobsters feed on particulates in the wild is unknown, even though this could be an important way for burrow-dwelling females to avoid starvation during the long breeding season. This was investigated using δ13C and δ15N isotopic signatures in tissues with long and short turnover rates to provide diet discrimination and compare this between males and females. Secondary objectives examined size-related differences and calculated the trophic position based on the new results. Almost half the diet (47%) was made up of suspended particulate organic matter (POMsusp) alone. Fish was another important item in the diet, with plankton and invertebrate sources coming much lower down in dietary importance. Significantly more suspension feeding was observed in small or medium sized individuals than large ones in both sexes. However, there were no sex-related patterns, despite females being restricted to burrows for part of the analysis period. Female diet was almost identical to males and POMsusp comprised a large component of the diet in both sexes. The trophic position was estimated at 2.94 ± 0.16 (mean ± SD), which was at the lower end of the range reported in previous studies (2.60 to 4.32).


Subject(s)
Diet , Nephropidae/metabolism , Particulate Matter/metabolism , Animals , Bayes Theorem , Carbon Isotopes/chemistry , Carbon Isotopes/metabolism , Diet/veterinary , Female , Male , Nitrogen Isotopes/chemistry , Nitrogen Isotopes/metabolism , Particulate Matter/analysis , Seasons
7.
Ambio ; 49(1): 107-117, 2020 Jan.
Article in English | MEDLINE | ID: mdl-30852778

ABSTRACT

Stock enhancement activities provide an opportunity to examine density-dependent suppression of population biomass which is a fundamental issue for resource management and design of no-take-zones. We document 'catch-and-wait' fisheries enhancement where all but the largest lobsters are thrown back, recapturing them later after they have grown to a larger size. The residency, rate of return, and potential negative density-dependent effects of this activity are described using a combination of tagging and v-notching and by relating spatial growth patterns to population density defined with Catch Per Unit Effort. The results successfully demonstrated the concept of catch-and-wait practices. However, a density-dependent suppression of growth (in body size) was observed in male lobsters. This demonstrates a mechanism to explain differences in lobster sizes previously observed across EU fishing grounds with different stock densities. This negative effect of density could also affect individual biomass production in marine reserve or no-take zones.


Subject(s)
Conservation of Natural Resources , Fisheries , Biomass , Fishes , Male , Population Density
8.
Philos Trans R Soc Lond B Biol Sci ; 374(1784): 20190205, 2019 10 28.
Article in English | MEDLINE | ID: mdl-31495308

ABSTRACT

Adhesive proteins of barnacle cement have potential as environmentally friendly adhesives owing to their ability to adhere to various substrates in aqueous environments. By understanding the taxonomic breath of barnacles with different lifestyles, we may uncover commonalities in adhesives produced by these specialized organisms. The 19 kDa cement protein (cp19k) of the stalked barnacle Pollicipes pollicipes was expressed in Escherichia coli BL21 to investigate its adhesive properties. Initial expression of hexahistidine-tagged protein (rPpolcp19k-his) yielded low levels of insoluble protein. Co-overproduction of E. coli molecular chaperones GroEL-GroES and trigger factor (TF) increased soluble protein yields, although TF co-purified with the target protein (TF-rPpolcp19k-his). Surface coat analysis revealed high levels of adsorption of the TF-rPpolcp19k-his complex and of purified E. coli TF on both hydrophobic and hydrophilic surfaces, while low levels of adsorption were observed for rPpolcp19k-his. Tag-free rPpolcp19k protein also exhibited low adsorption compared to fibrinogen and Cell-Tak controls on hydrophobic, neutral hydrophilic and charged self-assembled monolayers under surface plasmon resonance assay conditions designed to mimic the barnacle cement gland or seawater. Because rPpolcp19k protein displays low adhesive capability, this protein is suggested to confer the ability to self-assemble into a plaque within the barnacle cement complex. This article is part of the theme issue 'Transdisciplinary approaches to the study of adhesion and adhesives in biological systems'.


Subject(s)
Arthropod Proteins/genetics , Gene Expression , Thoracica/genetics , Animals , Arthropod Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Thoracica/metabolism
9.
Sci Data ; 6(1): 7, 2019 03 26.
Article in English | MEDLINE | ID: mdl-30914648

ABSTRACT

The availability of growth data in N. norvegicus is important for management purposes due to a lack of aging criteria and the commercial importance of fisheries in this species. Growth varies as a function of stock density, hence comparisons of growth rates between stocks at known density is particularly valuable. Growth is also related to starting size in males, making raw data on size-specific growth rates more valuable. Internally injected passive tags allowed us to track the growth of male and female individuals over one or two years. The spatial position of tagged recaptures was recorded to measure site fidelity of tagged releases. A total of 3300 pots were fished and their spatial positions were recorded to enable Catch Per Unit Effort calculations. Similarly, spatially geo-referenced v-notching and notched recovery enables spatially gridded densities to be calculated. Finally, acoustic mapping was carried out both on and off the fishing ground and was ground-truthed with sedimentology from grabs at 22 stations. These data are useful for fisheries and macroecological studies.


Subject(s)
Fisheries , Nephropidae , Animals , Female , Male , Marine Biology , Population Dynamics
10.
J Fish Biol ; 93(4): 685-693, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30069919

ABSTRACT

This study examines the diet of lesser spotted dogfish Scyliorhinus canicula, one of the most ubiquitous predators of European coastal waters. This species is of increasing ecological significance as other large predatory fish decline as it has known interactions with fisheries. Scyliorhinus canicula diet was investigated in Irish coastal waters during June and July 2014 using both stomach-content analysis and δ13 C and δ15 N stable-isotope ratios. Prey contribution to the diet from dual stable-isotope data was estimated using Bayesian mixing models. It was found that only stable-isotope analysis provided a time-integrated picture of the diet of S. canicula and allowed for a new estimation of their trophic position. Trophic positions from stomach-content analysis within the present study and previous studies were found to be higher than revealed by isotopes. Stomach-content analysis could not reveal the importance of soft-bodied animals in the diet of these fish, however this approach remains a valuable tool to understand the potential prey spectrum in advance of isotope analysis and allows for a better resolution down to species level. The results highlight a greater variety in the diet of this important predator and the benefit of taking a multidisciplinary approach in dietary studies.


Subject(s)
Dogfish/physiology , Feeding Behavior , Animals , Bayes Theorem , Carbon Isotopes/analysis , Diet , Gastrointestinal Contents/chemistry , Nitrogen Isotopes/analysis
11.
Sci Rep ; 6: 35143, 2016 10 11.
Article in English | MEDLINE | ID: mdl-27725735

ABSTRACT

Nephrops norvegicus is a commercially valuable fishery in the EU but management of stocks is challenging due to difficulties in aging individuals and calculating growth and biomass production. Growth of N. norvegicus was estimated by releasing 1177 tagged individuals in western Ireland in Summer 2013 and recapturing these in 2014 (n = 207, an average of 344 days later) and 2015 (n = 38, 654-665 days later). Moulting occurred twice per year in approximately half of the males and only once in females. Mean growth increments after approximately one year were 5.1 mm Carapace Length (CL) in males and 1.4 mm CL in females. After two years, males had grown by 12.0 mm CL and females by 4.6 mm CL, on average, across size classes. Low variation in growth increments was seen across female size classes, but significantly lower growth was observed in larger males, meeting an important assumption of the Von Bertalanffy Growth Function. Asymptotic carapace lengths were 70.8 mm (males) and 55.2 mm (females) with respective growth constants (k) of 0.161 yr-1 and 0.077 yr-1. The results suggest that this is a very productive fishery and that survivability of returns from creel fishing is high.


Subject(s)
Molting , Nephropidae/growth & development , Animal Shells/growth & development , Animals , Aquaculture , Female , Ireland , Male , Staining and Labeling
12.
Sci Data ; 3: 160087, 2016 10 11.
Article in English | MEDLINE | ID: mdl-27727238

ABSTRACT

At a proximal level, the physiological impacts of global climate change on ectothermic organisms are manifest as changes in body temperatures. Especially for plants and animals exposed to direct solar radiation, body temperatures can be substantially different from air temperatures. We deployed biomimetic sensors that approximate the thermal characteristics of intertidal mussels at 71 sites worldwide, from 1998-present. Loggers recorded temperatures at 10-30 min intervals nearly continuously at multiple intertidal elevations. Comparisons against direct measurements of mussel tissue temperature indicated errors of ~2.0-2.5 °C, during daily fluctuations that often exceeded 15°-20 °C. Geographic patterns in thermal stress based on biomimetic logger measurements were generally far more complex than anticipated based only on 'habitat-level' measurements of air or sea surface temperature. This unique data set provides an opportunity to link physiological measurements with spatially- and temporally-explicit field observations of body temperature.


Subject(s)
Bivalvia/physiology , Body Temperature , Animals , Climate Change , Ecosystem
13.
PeerJ ; 3: e1436, 2015.
Article in English | MEDLINE | ID: mdl-26644977

ABSTRACT

The requirement for high quality/non-degraded RNA is essential for an array of molecular biology analyses. When analysing the integrity of rRNA from the barnacle Lepas anatifera (Phylum Arthropoda, Subphylum Crustacea), atypical or sub-optimal rRNA profiles that were apparently degraded were observed on a bioanalyser electropherogram. It was subsequently discovered that the rRNA was not degraded, but arose due to a 'gap deletion' (also referred to as 'hidden break') in the 28S rRNA. An apparent excision at this site caused the 28S rRNA to fragment under heat-denaturing conditions and migrate along with the 18S rRNA, superficially presenting a 'degraded' appearance. Examination of the literature showed similar observations in a small number of older studies in insects; however, reading across multiple disciplines suggests that this is a wider issue that occurs across the Animalia and beyond. The current study shows that the 28S rRNA anomaly goes far beyond insects within the Arthropoda and is widespread within this phylum. We confirm that the anomaly is associated with thermal conversion because gap-deletion patterns were observed in heat-denatured samples but not in gels with formaldehyde-denaturing.

14.
Interface Focus ; 5(1): 20140062, 2015 Feb 06.
Article in English | MEDLINE | ID: mdl-25657841

ABSTRACT

The results of the first chemical analysis of the adhesive of Lepas anatifera, a stalked barnacle, are presented. A variety of elements were identified in scanning electron microscopy with energy dispersive spectrometry (SEM-EDS) of the adhesive, including Na, Mg, Ca, Cl, S, Al, Si, K and Fe; however, protein-metal interactions were not detected in Raman spectra of the adhesive. Elemental signatures from SEM-EDS of L. anatifera adhesive glands were less varied. Phosphorous was mostly absent in adhesive samples; supporting previous studies showing that phosphoserines do not play a significant role in adult barnacle adhesion. Disulfide bridges arising from Cys dimers were also investigated; Raman analysis showed weak evidence for S-S bonds in L. anatifera. In addition, there was no calcium carbonate signal in the attenuated total reflectance Fourier transform infrared spectra of L. anatifera adhesive, unlike several previous studies in other barnacle species. Significant differences were observed between the Raman spectra of L. anatifera and Balanus crenatus; these and a range of Raman peaks in the L. anatifera adhesive are discussed. Polysaccharide was detected in L. anatifera adhesive but the significance of this awaits further experiments. The results demonstrate some of the diversity within barnacle species in the chemistry of their adhesives.

15.
PLoS One ; 10(2): e0117006, 2015.
Article in English | MEDLINE | ID: mdl-25679507

ABSTRACT

Knowledge of the spatial distribution and habitat associations of species in relation to the environment is essential for their management and conservation. Habitat suitability models are useful in quantifying species-environment relationships and predicting species distribution patterns. Little is known, however, about the stability and performance of habitat suitability models when projected into new areas (spatial transferability) and how this can inform resource management. The aims of this study were to model habitat suitability of Norway lobster (Nephrops norvegicus) in five fished areas of the Northeast Atlantic (Aran ground, Irish Sea, Celtic Sea, Scotland Inshore and Fladen ground), and to test for spatial transferability of habitat models among multiple regions. Nephrops burrow density was modelled using generalised additive models (GAMs) with predictors selected from four environmental variables (depth, slope, sediment and rugosity). Models were evaluated and tested for spatial transferability among areas. The optimum models (lowest AICc) for different areas always included depth and sediment as predictors. Burrow densities were generally greater at depth and in finer sediments, but relationships for individual areas were sometimes more complex. Aside from an inclusion of depth and sediment, the optimum models differed between fished areas. When it came to tests of spatial transferability, however, most of the models were able to predict Nephrops density in other areas. Furthermore, transferability was not dependent on use of the optimum models since competing models were also able to achieve a similar level of transferability to new areas. A degree of decoupling between model 'fitting' performance and spatial transferability supports the use of simpler models when extrapolating habitat suitability maps to different areas. Differences in the form and performance of models from different areas may supply further information on the processes shaping species' distributions. Spatial transferability of habitat models can be used to support fishery management when the information is scarce but caution needs to be applied when making inference and a multi-area transferability analysis is preferable to bilateral comparisons between areas.


Subject(s)
Conservation of Natural Resources , Ecosystem , Fishes , Models, Theoretical , Animals , Environment , Geography , Spatial Analysis
17.
PLoS One ; 9(10): e108902, 2014.
Article in English | MEDLINE | ID: mdl-25295513

ABSTRACT

Barnacle adhesion underwater is an important phenomenon to understand for the prevention of biofouling and potential biotechnological innovations, yet so far, identifying what makes barnacle glue proteins 'sticky' has proved elusive. Examination of a broad range of species within the barnacles may be instructive to identify conserved adhesive domains. We add to extensive information from the acorn barnacles (order Sessilia) by providing the first protein analysis of a stalked barnacle adhesive, Lepas anatifera (order Lepadiformes). It was possible to separate the L. anatifera adhesive into at least 10 protein bands using SDS-PAGE. Intense bands were present at approximately 30, 70, 90 and 110 kilodaltons (kDa). Mass spectrometry for protein identification was followed by de novo sequencing which detected 52 peptides of 7-16 amino acids in length. None of the peptides matched published or unpublished transcriptome sequences, but some amino acid sequence similarity was apparent between L. anatifera and closely-related Dosima fascicularis. Antibodies against two acorn barnacle proteins (ab-cp-52k and ab-cp-68k) showed cross-reactivity in the adhesive glands of L. anatifera. We also analysed the similarity of adhesive proteins across several barnacle taxa, including Pollicipes pollicipes (a stalked barnacle in the order Scalpelliformes). Sequence alignment of published expressed sequence tags clearly indicated that P. pollicipes possesses homologues for the 19 kDa and 100 kDa proteins in acorn barnacles. Homology aside, sequence similarity in amino acid and gene sequences tended to decline as taxonomic distance increased, with minimum similarities of 18-26%, depending on the gene. The results indicate that some adhesive proteins (e.g. 100 kDa) are more conserved within barnacles than others (20 kDa).


Subject(s)
Adhesives/chemistry , Proteins/chemistry , Thoracica/chemistry , Animals , Biofouling/prevention & control , Electrophoresis, Polyacrylamide Gel
18.
Adv Mar Biol ; 64: 27-63, 2013.
Article in English | MEDLINE | ID: mdl-23668587

ABSTRACT

This review summarizes the data on habitat, population ecology and ecosystem roles of Nephrops norvegicus. The species has a broad range in the northeast Atlantic and Mediterranean, although it is possible that small or isolated patches of suitable habitat may not be occupied due to restrictions on larval supply. Nephrops densities are related to the silt-clay content of sediments, with interactions between habitat quality and density indicating competition for resources. An analysis of density-size interactions across fishery functional management units (FUs) suggests that growth is suppressed at high densities due to competition (e.g. in the western Irish Sea), although recruitment dynamics or size-selective mortality may also shape the size structure of populations. Nephrops biomass available across FUs may be similar, reflecting a constant yield due to the inverse relationship between individual size and population density. Gaps in the understanding of Nephrops' ecology reflect uncertain ageing criteria, reliance on fisheries-dependent data and few if any undisturbed habitats in which to examine fisheries-independent interactions.


Subject(s)
Decapoda/classification , Decapoda/physiology , Ecosystem , Animals , Demography , Feeding Behavior
19.
Biol Bull ; 223(2): 192-204, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23111131

ABSTRACT

Barnacles produce a proteinaceous adhesive called cement to attach permanently to rocks or to other hard substrata. The stalked barnacle Dosima fascicularis is of special interest as it produces a large amount of foam-like cement that can be used as a float. The morphology of the cement apparatus and of the polymerized cement of this species is almost unknown. The current study aims at filling these gaps in our knowledge using light and electron microscopy as well as x-ray microtomography. The shape of the cement gland cells changes from round to ovoid during barnacle development. The cytoplasm of the gland cells, unlike that of some other barnacles, does not have distinct secretory and storage regions. The cement canals, which transport the cement from the gland cells to the base of the stalk, end at different positions in juvenile and mature animals. With increasing size of the cement float, the exit of the cement canals shift from the centrally positioned attachment disk of the vestigial antennules to more lateral positions on the stalk. The bubbles enclosed in the foam-like float are most likely filled with CO(2) that diffuses from the hemolymph into the cement canal system and from there into the cement.


Subject(s)
Thoracica/ultrastructure , Tissue Adhesives , Animals , Microscopy , X-Ray Microtomography
20.
J Morphol ; 273(12): 1377-91, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22911953

ABSTRACT

Adhesives that are naturally produced by marine organisms are potential sources of inspiration in the search for medical adhesives. Investigations of barnacle adhesives are at an early stage but it is becoming obvious that barnacles utilize a unique adhesive system compared to other marine organisms. The current study examined the fine structure and chemistry of the glandular system that produces the adhesive of the barnacle Lepas anatifera. All components for the glue originated from large single-cell glands (70-180 µm). Staining (including immunostaining) showed that L-3,4-dihydroxyphenylalanine and phosphoserine were not present in the glue producing tissues, demonstrating that the molecular adhesion of barnacles differs from all other permanently gluing marine animals studied to date. The glandular tissue and adhesive secretion primarily consisted of slightly acidic proteins but also included some carbohydrate. Adhesive proteins were stored in cytoplasmic granules adjacent to an intracellular drainage canal (ICC); observations implicated both merocrine and apocrine mechanisms in the transport of the secretion from the cell cytoplasm to the ICC. Inside the ICC, the secretion was no longer contained within granules but was a flocculent material which became "clumped" as it traveled through the canal network. Hemocytes were not seen within the adhesive "apparatus" (comprising of the glue producing cells and drainage canals), nor was there any structural mechanism by which additions such as hemocytes could be made to the secretion. The unicellular adhesive gland in barnacles is distinct from multicellular adhesive systems observed in marine animals such as mussels and tubeworms. Because the various components are not physically separated in the apparatus, the barnacle adhesive system appears to utilize completely different and unknown mechanisms for maintaining the liquid state of the glue within the body, as well as unidentified mechanisms for the conversion of extruded glue into hard cement.


Subject(s)
Adhesives/isolation & purification , Glycoproteins/isolation & purification , Thoracica/chemistry , Thoracica/cytology , Adhesives/chemistry , Adhesives/metabolism , Animals , Glycoproteins/biosynthesis , Glycoproteins/chemistry , Secretory Pathway , Thoracica/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...