Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cell Res ; 78: 103447, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38796984

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. Clinical heterogeneity and complex genetics pose challenges to understanding disease mechanisms and producing effective cures. To model clinical heterogeneity, we generated human induced pluripotent stem cells (iPSCs) from two sporadic ALS patients (sporadic ALS and sporadic ALS with frontotemporal dementia), two familial ALS patients (familial SOD1 mutation positive and familial C9orf72 repeat expansion positive), and four age- and sex-matched healthy controls. These iPSCs can be used to generate 2D and 3D in vitro models of ALS to investigate mechanisms of disease and screen for therapeutics.


Subject(s)
Amyotrophic Lateral Sclerosis , C9orf72 Protein , Frontotemporal Dementia , Induced Pluripotent Stem Cells , Superoxide Dismutase-1 , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/metabolism , Induced Pluripotent Stem Cells/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Frontotemporal Dementia/metabolism , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Female , Male , Cell Line , Middle Aged
2.
Geroscience ; 46(1): 999-1015, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37314668

ABSTRACT

Following prolonged cell division, mesenchymal stem cells enter replicative senescence, a state of permanent cell cycle arrest that constrains the use of this cell type in regenerative medicine applications and that in vivo substantially contributes to organismal ageing. Multiple cellular processes such as telomere dysfunction, DNA damage and oncogene activation are implicated in promoting replicative senescence, but whether mesenchymal stem cells enter different pre-senescent and senescent states has remained unclear. To address this knowledge gap, we subjected serially passaged human ESC-derived mesenchymal stem cells (esMSCs) to single cell profiling and single cell RNA-sequencing during their progressive entry into replicative senescence. We found that esMSC transitioned through newly identified pre-senescent cell states before entering into three different senescent cell states. By deconstructing this heterogeneity and temporally ordering these pre-senescent and senescent esMSC subpopulations into developmental trajectories, we identified markers and predicted drivers of these cell states. Regulatory networks that capture connections between genes at each timepoint demonstrated a loss of connectivity, and specific genes altered their gene expression distributions as cells entered senescence. Collectively, this data reconciles previous observations that identified different senescence programs within an individual cell type and should enable the design of novel senotherapeutic regimes that can overcome in vitro MSC expansion constraints or that can perhaps slow organismal ageing.


Subject(s)
Cellular Senescence , Mesenchymal Stem Cells , Humans , Cellular Senescence/physiology , Mesenchymal Stem Cells/metabolism
3.
Acta Neuropathol Commun ; 10(1): 61, 2022 04 25.
Article in English | MEDLINE | ID: mdl-35468848

ABSTRACT

A central event in the pathogenesis of motor neuron disease (MND) is the loss of neuromuscular junctions (NMJs), yet the mechanisms that lead to this event in MND remain to be fully elucidated. Maintenance of the NMJ relies upon neural agrin (n-agrin) which, when released from the nerve terminal, activates the postsynaptic Muscle Specific Kinase (MuSK) signaling complex to stabilize clusters of acetylcholine receptors. Here, we report that muscle from MND patients has an increased proportion of slow fibers and muscle fibers with smaller diameter. Muscle cells cultured from MND biopsies failed to form large clusters of acetylcholine receptors in response to either non-MND human motor axons or n-agrin. Furthermore, levels of expression of MuSK, and MuSK-complex components: LRP4, Caveolin-3, and Dok7 differed between muscle cells cultured from MND patients compared to those from non-MND controls. To our knowledge, this is the first time a fault in the n-agrin-LRP4-MuSK signaling pathway has been identified in muscle from MND patients. Our results highlight the n-agrin-LRP4-MuSK signaling pathway as a potential therapeutic target to prolong muscle function in MND.


Subject(s)
Agrin , Motor Neuron Disease , Agrin/metabolism , Humans , LDL-Receptor Related Proteins/metabolism , Receptors, Cholinergic/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...