Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell Environ ; 44(12): 3623-3635, 2021 12.
Article in English | MEDLINE | ID: mdl-34506038

ABSTRACT

Short-term plant respiration (R) increases exponentially with rising temperature, but drought could reduce respiration by reducing growth and metabolism. Acclimation may alter these responses. We examined if species with different drought responses would differ in foliar R response to +4.8°C temperature and -45% precipitation in a field experiment with mature piñon and juniper trees, and if any differences between species were related to differences in photosynthesis rates, shoot growth and nonstructural carbohydrates (NSCs). Short-term foliar R had a Q10 of 1.6 for piñon and 2.6 for juniper. Piñon foliar R did not respond to the +4.8°C temperatures, but R increased 1.4× for juniper. Across treatments, piñon foliage had higher growth, lower NSC content, 29% lower photosynthesis rates, and 44% lower R than juniper. Removing 45% precipitation had little impact on R for either species. Species differences in the response of R under elevated temperature were related to substrate availability and stomatal response to leaf water potential. Despite not acclimating to the higher temperature and having higher R than piñon, greater substrate availability in juniper suggests it could supply respiratory demand for much longer than piñon. Species responses will be critical in ecosystem response to a warmer climate.


Subject(s)
Carbohydrate Metabolism , Droughts , Hot Temperature , Juniperus/physiology , Photosynthesis , Pinus/physiology , Plant Leaves/physiology , Juniperus/growth & development , Pinus/growth & development , Plant Leaves/growth & development
2.
Sci Rep ; 8(1): 7667, 2018 05 16.
Article in English | MEDLINE | ID: mdl-29769592

ABSTRACT

Stomatal conductance (gs) impacts both photosynthesis and transpiration, and is therefore fundamental to the global carbon and water cycles, food production, and ecosystem services. Mathematical models provide the primary means of analysing this important leaf gas exchange parameter. A nearly universal assumption in such models is that the vapour pressure inside leaves (ei) remains saturated under all conditions. The validity of this assumption has not been well tested, because so far ei cannot be measured directly. Here, we test this assumption using a novel technique, based on coupled measurements of leaf gas exchange and the stable isotope compositions of CO2 and water vapour passing over the leaf. We applied this technique to mature individuals of two semiarid conifer species. In both species, ei routinely dropped below saturation when leaves were exposed to moderate to high air vapour pressure deficits. Typical values of relative humidity in the intercellular air spaces were as low 0.9 in Juniperus monosperma and 0.8 in Pinus edulis. These departures of ei from saturation caused significant biases in calculations of gs and the intercellular CO2 concentration. Our results refute the longstanding assumption of saturated vapour pressure in plant leaves under all conditions.

3.
Nat Commun ; 8: 15799, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28643801

ABSTRACT

Over the past two decades the primary driver of mass loss from the West Antarctic Ice Sheet (WAIS) has been warm ocean water underneath coastal ice shelves, not a warmer atmosphere. Yet, surface melt occurs sporadically over low-lying areas of the WAIS and is not fully understood. Here we report on an episode of extensive and prolonged surface melting observed in the Ross Sea sector of the WAIS in January 2016. A comprehensive cloud and radiation experiment at the WAIS ice divide, downwind of the melt region, provided detailed insight into the physical processes at play during the event. The unusual extent and duration of the melting are linked to strong and sustained advection of warm marine air toward the area, likely favoured by the concurrent strong El Niño event. The increase in the number of extreme El Niño events projected for the twenty-first century could expose the WAIS to more frequent major melt events.

4.
Plant Cell Environ ; 39(1): 38-49, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26081870

ABSTRACT

Relatively anisohydric species are predicted to be more predisposed to hydraulic failure than relatively isohydric species, as they operate with narrower hydraulic safety margins. We subjected co-occurring anisohydric Juniperus monosperma and isohydric Pinus edulis trees to warming, reduced precipitation, or both, and measured their gas exchange and hydraulic responses. We found that reductions in stomatal conductance and assimilation by heat and drought were more frequent during relatively moist periods, but these effects were not exacerbated in the combined heat and drought treatment. Counter to expectations, both species exhibited similar gs temporal dynamics in response to drought. Further, whereas P. edulis exhibited chronic embolism, J. monosperma showed very little embolism due to its conservative stomatal regulation and maintenance of xylem water potential above the embolism entry point. This tight stomatal control and low levels of embolism experienced by juniper refuted the notion that very low water potentials during drought are associated with loose stomatal control and with the hypothesis that anisohydric species are more prone to hydraulic failure than isohydric species. Because direct association of stomatal behaviour with embolism resistance can be misleading, we advocate consideration of stomatal behaviour relative to embolism resistance for classifying species drought response strategies.


Subject(s)
Carbon/metabolism , Juniperus/physiology , Pinus/physiology , Plant Transpiration/physiology , Droughts , Models, Biological , Plant Leaves/physiology , Plant Stomata/physiology , Trees , Water/physiology , Xylem/physiology
5.
Glob Chang Biol ; 21(11): 4210-20, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26149972

ABSTRACT

Higher temperatures associated with climate change are anticipated to trigger an earlier start to the growing season, which could increase the terrestrial C sink strength. Greater variability in the amount and timing of precipitation is also expected with higher temperatures, bringing increased drought stress to many ecosystems. We experimentally assessed the effects of higher temperature and drought on the foliar phenology and shoot growth of mature trees of two semiarid conifer species. We exposed field-grown trees to a ~45% reduction in precipitation with a rain-out structure ('drought'), a ~4.8 °C temperature increase with open-top chambers ('heat'), and a combination of both simultaneously ('drought + heat'). Over the 2013 growing season, drought, heat, and drought + heat treatments reduced shoot and needle growth in piñon pine (Pinus edulis) by ≥39%, while juniper (Juniperus monosperma) had low growth and little response to these treatments. Needle emergence on primary axis branches of piñon pine was delayed in heat, drought, and drought + heat treatments by 19-57 days, while secondary axis branches were less likely to produce needles in the heat treatment, and produced no needles at all in the drought + heat treatment. Growth of shoots and needles, and the timing of needle emergence correlated inversely with xylem water tension and positively with nonstructural carbohydrate concentrations. Our findings demonstrate the potential for delayed phenological development and reduced growth with higher temperatures and drought in tree species that are vulnerable to drought and reveal potential mechanistic links to physiological stress responses. Climate change projections of an earlier and longer growing season with higher temperatures, and consequent increases in terrestrial C sink strength, may be incorrect for regions where plants will face increased drought stress with climate change.


Subject(s)
Climate Change , Droughts , Hot Temperature , Juniperus/physiology , Pinus/physiology , Juniperus/growth & development , New Mexico , Pinus/growth & development , Stress, Physiological , Trees/growth & development , Trees/physiology
6.
Rapid Commun Mass Spectrom ; 24(3): 243-53, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20049893

ABSTRACT

High frequency observations of the stable isotopic composition of CO(2) effluxes from soil have been sparse due in part to measurement challenges. We have developed an open-system method that utilizes a flow-through chamber coupled to a tunable diode laser (TDL) to quantify the rate of soil CO(2) efflux and its delta(13)C and delta(18)O values (delta(13)C(R) and delta(18)O(R), respectively). We tested the method first in the laboratory using an artificial soil test column and then in a semi-arid woodland. We found that the CO(2) efflux rates of 1.2 to 7.3 micromol m(-2) s(-1) measured by the chamber-TDL system were similar to measurements made using the chamber and an infrared gas analyzer (IRGA) (R(2) = 0.99) and compared well with efflux rates generated from the soil test column (R(2) = 0.94). Measured delta(13)C and delta(18)O values of CO(2) efflux using the chamber-TDL system at 2 min intervals were not significantly different from source air values across all efflux rates after accounting for diffusive enrichment. Field measurements during drought demonstrated a strong dependency of CO(2) efflux and isotopic composition on soil water content. Addition of water to the soil beneath the chamber resulted in average changes of +6.9 micromol m(-2) s(-1), -5.0 per thousand, and -55.0 per thousand for soil CO(2) efflux, delta(13)C(R) and delta(18)O(R), respectively. All three variables initiated responses within 2 min of water addition, with peak responses observed within 10 min for isotopes and 20 min for efflux. The observed delta(18)O(R) was more enriched than predicted from temperature-dependent H(2)O-CO(2) equilibration theory, similar to other recent observations of delta(18)O(R) from dry soils (Wingate L, Seibt U, Maseyk K, Ogee J, Almeida P, Yakir D, Pereira JS, Mencuccini M. Global Change Biol. 2008; 14: 2178). The soil chamber coupled with the TDL was found to be an effective method for capturing soil CO(2) efflux and its stable isotope composition at high temporal frequency.


Subject(s)
Carbon Dioxide/analysis , Environmental Monitoring/instrumentation , Soil/analysis , Carbon Isotopes/analysis , Environmental Monitoring/methods , Equipment Design , Oxygen Isotopes/analysis , Water/analysis
7.
Plant Cell Environ ; 30(4): 456-68, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17324232

ABSTRACT

The oxygen isotope composition of CO(2) respired by Ricinus communis leaves (delta(18)O(R)) was measured under non-steady-state conditions with a temporal resolution of 3 min using a tunable diode laser (TDL) absorption spectrometer coupled to a portable gas exchange system. The SD of delta(18)O measurement by the TDL was +/- 0.2 per thousand and close to that of traditional mass spectrometers. Further, delta(18)O(R) values at isotopic steady state were comparable to those obtained using traditional flask sampling and mass spectrometric techniques for R. communis grown and measured in similar environmental conditions. As well as higher temporal resolution, the online TDL method described here has a number of advantages over mass spectrometric techniques. At isotopic steady state among plants grown at high light, the "one-way flux" model was required to accurately predict delta(18)O(R). A comparison of measurements and the model suggests that plants grown under low-light conditions have either a lower proportion of chloroplast CO(2) that isotopically equilibrates with chloroplast water, or more enriched delta(18)O of CO(2) in the chloroplast that has not equilibrated with local water. The high temporal resolution of isotopic measurements allowed the first measurements of delta(18)O(R) when stomatal conductance was rapidly changing. Under non-steady-state conditions, delta(18)O(R) varied between 50 and 220 per thousand for leaves of plants grown under different light and water environments, and varied by as much as 100 per thousand within 10 min for a single leaf. Stomatal conductance ranged from 0.001 to 1.586 mol m(-2) s(-1), and had an important influence on delta(18)O(R) under non-steady-state conditions not only via effects on leaf water H(2) (18)O enrichment, but also via effects on the rate of the one-way fluxes of CO(2) into and out of the leaf.


Subject(s)
Carbon Dioxide/metabolism , Ricinus/metabolism , Spectrum Analysis/methods , Models, Biological , Oxygen Isotopes , Plant Leaves/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...