Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Part Fibre Toxicol ; 12: 9, 2015 Mar 25.
Article in English | MEDLINE | ID: mdl-25884802

ABSTRACT

BACKGROUND: Particle size is thought to be a critical factor affecting the bioavailability of nanoparticles following oral exposure. Nearly all studies of nanoparticle bioavailability focus on characterization of the primary particle size of the material as supplied or as dosed, and not on agglomeration behavior within the gastrointestinal tract, which is presumably most relevant for absorption. METHODS: In the study reported here, snapshots of agglomeration behavior of gold nanospheres were evaluated in vivo throughout the gastrointestinal tract using transmission electron microscopy. Agglomeration state within the gastrointestinal tract was then used to help explain differences in gastrointestinal particle absorption, as indicated by tissue levels of gold detected using inductively coupled plasma mass spectrometry. Mice were dosed (10 mg/kg) with either 23 nm PEG-coated or uncoated gold nanospheres. RESULTS: Transmission electron microscopy demonstrates that PEG-coated gold nanoparticles can be observed as primary, un-agglomerated particles throughout the gastrointestinal tract and feces of dosed animals. In contrast, uncoated gold nanoparticles were observed to form agglomerates of several hundred nanometers in all tissues and feces. Inductively coupled plasma mass spectrometry shows significantly higher levels of gold in tissues from animals dosed with PEG-coated versus uncoated 23 nm gold nanoparticles. Retention of particles after a single oral gavage was also very high, with all tissues of animals dosed with PEG-coated particles having detectable levels of gold at 30 days following exposure. CONCLUSIONS: Qualitative observation of these particles in vivo shows that dispersed PEG-coated particles are able to reach the absorptive tissues of the intestine while agglomerated uncoated particles are sequestered in the lumen of these tissues. However, the large differences observed for in vivo agglomeration behavior were not reflected in oral absorption, as indicated by gold tissue levels. Additional factors, such as surface chemistry, may have played a more important role than in vivo particle size and should be investigated further.


Subject(s)
Gastrointestinal Tract/metabolism , Gold/pharmacokinetics , Nanoshells/chemistry , Oral Mucosal Absorption/drug effects , Polyethylene Glycols/pharmacokinetics , Adhesiveness , Administration, Oral , Animals , Biological Availability , Gastric Juice/chemistry , Gold/administration & dosage , Gold/chemistry , Male , Mice, Inbred ICR , Microscopy, Electron, Transmission , Models, Theoretical , Nanoshells/administration & dosage , Organ Specificity , Particle Size , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/chemistry , Spectrophotometry, Atomic , Time Factors , Tissue Distribution
2.
Nanotoxicology ; 9(1): 116-25, 2015 Feb.
Article in English | MEDLINE | ID: mdl-24620736

ABSTRACT

Nanomaterials are known to cause interference with several standard toxicological assays. As part of an in vivo study of PEG-coated gold nanorods in mice, nanorods were added to reference serum, and results for standard clinical chemistry parameters were compared with serum analyzed without nanorods. PEG-coated gold nanorods produced several concentration-dependent interferences. Comparisons were then made with PEG-coated gold and silica nanospheres. Interferences were observed for both materials that differed from gold nanorods. Removal of the particles from serum by centrifugation prior to analysis resolved most, but not all of the interferences. Additional clinical chemistry analyzers were used to further investigate trends in assay interference. We conclude that PEG-coated gold and silica nanoparticles can interfere with standard clinical chemistry tests in ways that vary depending upon material, shape, and specific assay methodology employed. Assay interferences by nanomaterials cannot always be predicted, underscoring the need to verify that nanomaterials under study do not interfere with methods used to evaluate potential biological effects.


Subject(s)
Clinical Chemistry Tests/standards , Gold/chemistry , Nanospheres/chemistry , Nanotubes/chemistry , Silicon Dioxide/chemistry , Animals , Male , Mice , Mice, Inbred ICR , Particle Size , Spectrometry, Fluorescence
3.
Methods Mol Biol ; 926: 13-32, 2012.
Article in English | MEDLINE | ID: mdl-22975954

ABSTRACT

The scientific community, regulatory agencies, environmentalists, and most industry representatives all agree that more effort is required to ensure the responsible and safe development of new nanotechnologies. Characterizing nanomaterials is a key aspect in this effort. There is no universally agreed upon minimum set of characteristics although certain common properties are included in most recommendations. Therefore, characterization becomes more like a puzzle put together with various measurements rather than a single straightforward analytical measurement. In this chapter, we emphasize and illustrate the important elements of nanoparticle characterization with a systematic approach to physicochemical characterization. We start with an overview describing the properties that are most significant to toxicological testing along with suggested methods for characterizing an as-received nanomaterial and then specifically address the measurement of size, surface properties, and imaging.


Subject(s)
Nanostructures/toxicity , Nanotechnology/methods , Animals , Imaging, Three-Dimensional , Microscopy , Nanostructures/ultrastructure , Particle Size , Surface Properties/drug effects
4.
Methods Mol Biol ; 624: 39-65, 2010.
Article in English | MEDLINE | ID: mdl-20217588

ABSTRACT

Nanotechnology is actively being used to develop promising diagnostics and therapeutics tools for the treatment of cancer and many other diseases. The unique properties of nanomaterials offer an exciting frontier of possibilities for biomedical researchers and scientists. Because existing knowledge of macroscopic materials does not always allow for adequate prediction of the characteristics and behaviors of nanoscale materials in controlled environments, much less in biological systems, careful nanoparticle characterization should accompany biomedical applications of these materials. Informed correlations between adequately characterized nanomaterial properties and reliable biological endpoints are essential for guiding present and future researchers toward clinical nanotechnology-based solutions for cancer. Biological environments are notoriously dynamic; hence, nanoparticulate interactions within these environments will likely be comparatively diverse. For this reason, we recommend that an interactive and systematic approach to material characterization be taken when attempting to elucidate or measure biological interactions with nanoscale materials. We intend for this chapter to be a practical guide that could be used by researchers to identify key nanomaterial characteristics that require measurement for their systems and the appropriate techniques to perform those measurements. Each section includes a basic overview of each measurement and notes on how to address some of the common difficulties associated with nanomaterial characterization.


Subject(s)
Nanoparticles/chemistry , Nanotechnology/methods , Neoplasms/therapy , Humans , Particle Size , Porosity , Surface Properties
5.
Environ Sci Technol ; 42(14): 5304-9, 2008 Jul 15.
Article in English | MEDLINE | ID: mdl-18754385

ABSTRACT

SiO2/V2O5/TiO2 catalysts were synthesized for removing elemental mercury (Hg0) from simulated coal-combustion flue gas. Experiments were carried out in fixed-bed reactors using both pellet and powder catalysts. In contrast to the SiO2-TiO2 composites developed in previous studies, the V2O5 based catalysts do not need ultraviolet light activation and have higher Hg0 oxidation efficiencies. For Hg0 removal by SiO2-V2O5 catalysts, the optimal V2O5 loading was found between 5 and 8%, which may correspond to a maximum coverage of polymeric vanadates on the catalyst surface. Hg0 oxidation follows an Eley-Rideal mechanism where HCI, NO, and NO2 are first adsorbed on the V2O5 active sites and then react with gas-phase Hg0. HCI, NO, and NO2 promote Hg oxidation, while SO2 has an insignificant effect and water vapor inhibits Hgo oxidation. The SiO2-TiO2-V2O5 catalysts exhibit greater Hg0 oxidation efficiencies than SiO2-V2O5, may be because the V-O-Ti bonds are more active than the V-O-Si bonds. This superior oxidation capability is advantageous to power plants equipped with wet-scrubbers where oxidized Hg can be easily captured. The findings in this work revealed the importance of optimizing the composition and microstructures of SCR (selective catalytic reduction) catalysts for Hg0 oxidation in coal-combustion flue gas.


Subject(s)
Coal , Incineration , Silicon Dioxide/chemistry , Titanium/chemistry , Vanadium Compounds/chemistry , Catalysis , Humans , Mercury/chemistry , Nitric Oxide/chemistry , Oxidation-Reduction , Oxygen/chemistry , Power Plants
6.
Toxicol Sci ; 90(2): 296-303, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16407094

ABSTRACT

To properly assign mechanisms or causes for toxic effects of nanoscale materials, their properties and characteristics both outside and within the biological environment must be well understood. Scientists have many tools for studying the size, shape, and surface properties of particulates outside of the physiological environment; however, it is difficult to measure many of these same properties in situ without perturbing the environment, leading to spurious findings. Characterizing nanoparticle systems in situ can be further complicated by an organism's active clearance, defense, and/or immune responses. As toxicologists begin to examine nanomaterials in a systematic fashion, there is consensus that a series of guidelines or recommended practices is necessary for basic characterization of nanomaterials. These recommended practices should be developed jointly by physical scientists skilled in nano characterization and biological scientists experienced in toxicology research. In this article, basic nanoparticle characterization techniques are discussed, along with the some of the issues and implications associated with measuring nanoparticle properties and their interactions with biological systems. Recommendations regarding how best to approach nanomaterial characterization include using proper sampling and measurement techniques, forming multidisciplinary teams, and making measurements as close to the biological action point as possible.


Subject(s)
Nanostructures/chemistry , Drug Evaluation, Preclinical , Nanostructures/toxicity , Particle Size , Porosity , Research , Surface Properties , Toxicity Tests
7.
Environ Sci Technol ; 39(5): 1269-74, 2005 Mar 01.
Article in English | MEDLINE | ID: mdl-15787366

ABSTRACT

A novel nanocomposite that combines high-surface area silica with the photocatalytic properties of titania has been developed that allows for effective capture of elemental mercury vapor. The adsorption capability of the developed material has been found to improve after periods of photocatalytic oxidation. In this study, the mechanisms for adsorption enhancement were identified. BET nitrogen adsorption and mercury porosimetry were used to evaluate pore structure, and the results suggest that a decrease in contact angle was likely to be responsible for improved mercury capture over time. Contact angle measurements showed a significant change of more than 10 degrees, indicating greater attraction to mercury for the used pellets due to deposited mercuric oxide. ICP and TGA analyses showed that mercury was captured as both elemental mercury (Hg0) and mercuric oxide (HgO). In addition, it was shown that pellets used for nearly 500 h still showed greater than 90% removal efficiency and had an average capacity of 10 mg of Hg/g based on mass balance calculations, while some pellets had a capacity over 30 mg of Hg/g according to ICP and TGA analyses. Mercuric oxide doped pellets removed 100% of elemental mercury without pretreatment. The superior mercury removal efficiency combined with various advantages of the novel composite demonstrates its use as an effective alternative to conventional activated carbon injection technology.


Subject(s)
Air Pollutants/isolation & purification , Mercury/isolation & purification , Nanostructures , Silicon Dioxide/chemistry , Titanium/chemistry , Adsorption , Mercury/chemistry , Photochemistry , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...