Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Chem Sci ; 15(21): 8242-8248, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38817579

ABSTRACT

Stepwise metalation of the hexadentate ligand tbsLH6 (tbsLH6 = 1,3,5-C6H9(NHC6H4-o-NHSiMe2tBu)3) affords bimetallic trinuclear clusters (tbsL)Fe2Zn(thf) and (tbsL)Fe2Zn(py). Reactivity studies were pursued to understand metal atom lability as the clusters undergo ligand substitution, redox chemistry, and group transfer processes. Chloride addition to (tbsL)Fe2Zn(thf) resulted in a mixture of species including both all-zinc and all-iron products. Addition of ArN3 (Ar = Ph, 3,5-(CF3)2C6H3) to (tbsL)Fe2Zn(py) yielded a mixture of two trinuclear products: (tbsL)Fe3(µ3-NAr) and (tbsL)Fe2Zn(µ3-NAr)(py). The two imido species were separated via crystallization, and outer sphere reduction of (tbsL)Fe2Zn(µ3-NAr)(py) resulted in the formation of a single product, [2,2,2-crypt(K)][(tbsL)Fe2Zn(µ3-NAr)]. These results provide insight into the relationship between heterometallic cluster structure and substitutional lability and could help inform both future catalyst design and our understanding of metal atom lability in bioinorganic systems.

2.
J Am Chem Soc ; 138(7): 2235-43, 2016 Feb 24.
Article in English | MEDLINE | ID: mdl-26799500

ABSTRACT

The one-electron reduction of ((tbs)L)Fe3(thf)¹ furnishes [M][((tbs)L)Fe3] ([M]⁺ = [(18-C-6)K(thf)2]⁺ (1, 76%) or [(crypt-222)K]⁺ (2, 54%)). Upon reduction, the ligand (tbs)L6⁻ rearranges around the triiron core to adopt an almost ideal C3-symmetry. Accompanying the ((tbs)L) ligand rearrangement, the THF bound to the neutral starting material is expelled, and the Fe-Fe distances within the trinuclear cluster contract by ∼0.13 Å in 1. Variable-temperature magnetic susceptibility data indicates a well-isolated S = 11/2 spin ground state that persists to room temperature. Slow magnetic relaxation is observed at low temperature as evidenced by the out-of-phase (χ(M)″) component of the alternating current (ac) magnetic susceptibility data and by the appearance of hyperfine splitting in the zero-field 57Fe Mössbauer spectra at 4.2 K. Analysis of the ac magnetic susceptibility yields an effective spin reversal barrier (U(eff)) of 22.6(2) cm⁻¹, nearly matching the theoretical barrier of 38.7 cm⁻¹ calculated from the axial zero-field splitting parameter (D = -1.29 cm⁻¹) extracted from the reduced magnetization data. A polycrystalline sample of 1 displays three sextets in the Mössbauer spectrum at 4.2 K (H(ext) = 0) which converge to a single six-line pattern in a frozen 2-MeTHF glass sample, indicating a unique iron environment and thus strong electron delocalization. The spin ground state and ligand rearrangement are discussed within the framework of a fully delocalized cluster exhibiting strong double and direct exchange interactions.


Subject(s)
Electrons , Iron Compounds/chemistry , Crystallography, X-Ray , Iron Compounds/chemical synthesis , Models, Molecular , Oxidation-Reduction , Quantum Theory , Spectroscopy, Mossbauer
3.
J Am Chem Soc ; 136(43): 15346-55, 2014 Oct 29.
Article in English | MEDLINE | ID: mdl-25264809

ABSTRACT

Polynuclear transition metal complexes, which frequently constitute the active sites of both biological and chemical catalysts, provide access to unique chemical transformations that are derived from metal-metal cooperation. Reductive elimination via ligand-bridged binuclear intermediates from bimetallic cores is one mechanism by which metals may cooperate during catalysis. We have established families of Rh2 complexes that participate in HX-splitting photocatalysis in which metal-metal cooperation is credited with the ability to achieve multielectron photochemical reactions in preference to single-electron transformations. Nanosecond-resolved transient absorption spectroscopy, steady-state photocrystallography, and computational modeling have allowed direct observation and characterization of Cl-bridged intermediates (intramolecular analogues of classical ligand-bridged intermediates in binuclear eliminations) in halogen elimination reactions. On the basis of these observations, a new class of Rh2 complexes, supported by CO ligands, has been prepared, allowing for the isolation and independent characterization of the proposed halide-bridged intermediates. Direct observation of halide-bridged structures establishes binuclear reductive elimination as a viable mechanism for photogenerating energetic bonds.


Subject(s)
Halogens/chemistry , Organometallic Compounds/chemistry , Photochemical Processes , Rhodium/chemistry , Catalysis , Crystallization , Models, Molecular , Molecular Conformation , Quantum Theory
4.
Inorg Chem ; 53(11): 5429-37, 2014 Jun 02.
Article in English | MEDLINE | ID: mdl-24833117

ABSTRACT

The chemical oxidation and subsequent group transfer activity of the unusual diiron imido complexes Fe((i)PrNPPh2)3Fe≡NR (R = tert-butyl ((t)Bu), 1; adamantyl, 2) was examined. Bulk chemical oxidation of 1 and 2 with Fc[PF6] (Fc = ferrocene) is accompanied by fluoride ion abstraction from PF6(-) by the iron center trans to the Fe≡NR functionality, forming F-Fe((i)PrNPPh2)3Fe≡NR ((i)Pr = isopropyl) (R = (t)Bu, 3; adamantyl, 4). Axial halide ligation in 3 and 4 significantly disrupts the Fe-Fe interaction in these complexes, as is evident by the >0.3 Å increase in the intermetallic distance in 3 and 4 compared to 1 and 2. Mössbauer spectroscopy suggests that each of the two pseudotetrahedral iron centers in 3 and 4 is best described as Fe(III) and that one-electron oxidation has occurred at the tris(amido)-ligated iron center. The absence of electron delocalization across the Fe-Fe≡NR chain in 3 and 4 allows these complexes to readily react with CO and (t)BuNC to generate the Fe(III)Fe(I) complexes F-Fe((i)PrNPPh2)3Fe(CO)2 (5) and F-Fe((i)PrNPPh2)3Fe((t)BuNC)2 (6), respectively. Computational methods are utilized to better understand the electronic structure and reactivity of oxidized complexes 3 and 4.


Subject(s)
Ferric Compounds/chemistry , Models, Molecular , Molecular Structure , Nitrogen Fixation , Oxidation-Reduction
5.
J Am Chem Soc ; 135(38): 14448-58, 2013 Sep 25.
Article in English | MEDLINE | ID: mdl-23984911

ABSTRACT

Concomitant deprotonation and metalation of hexadentate ligand platform (tbs)LH6 ((tbs)LH6 = 1,3,5-C6H9(NHC6H4-o-NHSiMe2(t)Bu)3) with divalent transition metal starting materials Fe2(Mes)4 (Mes = mesityl) or Mn3(Mes)6 in the presence of tetrahydrofuran (THF) resulted in isolation of homotrinuclear complexes ((tbs)L)Fe3(THF) and ((tbs)L)Mn3(THF), respectively. In the absence of coordinating solvent (THF), the deprotonation and metalation exclusively afforded dinuclear complexes of the type ((tbs)LH2)M2 (M = Fe or Mn). The resulting dinuclear species were utilized as synthons to prepare bimetallic trinuclear clusters. Treatment of ((tbs)LH2)Fe2 complex with divalent Mn source (Mn2(N(SiMe3)2)4) afforded the bimetallic complex ((tbs)L)Fe2Mn(THF), which established the ability of hexamine ligand (tbs)LH6 to support mixed metal clusters. The substitutional homogeneity of ((tbs)L)Fe2Mn(THF) was determined by (1)H NMR, (57)Fe Mössbauer, and X-ray fluorescence. Anomalous scattering measurements were critical for the unambiguous assignment of the trinuclear core composition. Heating a solution of ((tbs)LH2)Mn2 with a stoichiometric amount of Fe2(Mes)4 (0.5 mol equiv) affords a mixture of both ((tbs)L)Mn2Fe(THF) and ((tbs)L)Fe2Mn(THF) as a result of the thermodynamic preference for heavier metal substitution within the hexa-anilido ligand framework. These results demonstrate for the first time the assembly of mixed metal cluster synthesis in an unbiased ligand platform.


Subject(s)
Coordination Complexes/chemical synthesis , Ferrous Compounds/chemistry , Manganese/chemistry , Ligands
6.
J Am Chem Soc ; 135(33): 12289-96, 2013 Aug 21.
Article in English | MEDLINE | ID: mdl-23865953

ABSTRACT

High-spin trinuclear iron complex ((tbs)L)Fe3(thf) ([(tbs)L](6-) = [1,3,5-C6H9(NC6H4-o-NSi(t)BuMe2)3](6-)) (S = 6) facilitates 2 and 4e(-) reduction of NxHy type substrates to yield imido and nitrido products. Reaction of hydrazine or phenylhydrazine with ((tbs)L)Fe3(thf) yields triiron µ(3)-imido cluster ((tbs)L)Fe3(µ(3)-NH) and ammonia or aniline, respectively. ((tbs)L)Fe3(µ(3)-NH) has a similar zero-field (57)Fe Mössbauer spectrum compared to previously reported [((tbs)L)Fe3(µ(3)-N)]NBu4, and can be directly synthesized by protonation of the anionic triiron nitrido with lutidinium tetraphenylborate. Deprotonation of the triiron parent imido ((tbs)L)Fe3(µ(3)-NH) with lithium bis(trimethylsilyl)amide results in regeneration of the triiron nitrido complex capped with a thf-solvated Li cation [((tbs)L)Fe3(µ(3)-N)]Li(thf)3. The lithium capped nitrido, structurally similar to the pseudo C3-symmetric triiron nitride with a tetrabutylammonium countercation, is rigorously C3-symmetric featuring intracore distances of Fe-Fe 2.4802(5) Å, Fe-N(nitride) 1.877(2) Å, and N(nitride)-Li 1.990(6) Å. A similar 2e(-) reduction of 1,2-diphenylhydrazine by ((tbs)L)Fe3(thf) affords ((tbs)L)Fe3(µ(3)-NPh) and aniline. The solid state structure of ((tbs)L)Fe3(µ(3)-NPh) is similar to the series of µ(3)-nitrido and -imido triiron complexes synthesized in this work with average Fe-Nimido and Fe-Fe bond lengths of 1.941(6) and 2.530(1) Å, respectively. Reductive N═N bond cleavage of azobenzene is also achieved in the presence of ((tbs)L)Fe3(thf) to yield triiron bis-imido complex ((tbs)L)Fe3(µ(3)-NPh)(µ(2)-NPh), which has been structurally characterized. Ligand redox participation has been ruled out, and therefore, charge balance indicates that the bis-imido cluster has undergone a 4e(-) metal based oxidation resulting in an (Fe(IV))(Fe(III))2 formulation. Cyclic voltammograms of the series of triiron clusters presented herein demonstrate that oxidation states up to (Fe(IV))(Fe(III))2 (in the case of [((tbs)L)Fe3(µ(3)-N)]NBu4) are electrochemically accessible. These results highlight the efficacy of high-spin, polynuclear reaction sites to cooperatively mediate small molecule activation.


Subject(s)
Iron/chemistry , Electron Transport , Hydrazines/chemistry , Models, Molecular , Molecular Conformation , Organometallic Compounds/chemistry
7.
Inorg Chem ; 52(9): 4802-11, 2013 May 06.
Article in English | MEDLINE | ID: mdl-23259457

ABSTRACT

The tris(phosphinoamide)-bridged Fe(II)Fe(II) diiron complex Fe(µ-(i)PrNPPh2)3Fe(η(2)-(i)PrNPPh2) (1) can be reduced in the absence or presence of PMe3 to generate the mixed-valence Fe(II)Fe(I) complexes Fe(µ-(i)PrNPPh2)3Fe(PPh2NH(i)Pr) (2) or Fe(µ-(i)PrNPPh2)3Fe(PMe3) (3), respectively. Following a typical oxidative group transfer procedure, treatment of 2 or 3 with organic azides generates the mixed-valent Fe(II)Fe(III) imido complexes Fe((i)PrNPPh2)3Fe≡NR (R = (t)Bu (4), Ad (5), 2,4,6-trimethylphenyl (6)). These complexes represent the first examples of first-row bimetallic complexes featuring both metal-ligand multiple bonds and metal-metal bonds. The reduced complexes 2 and 3 and imido complexes 4-6 have been characterized via X-ray crystallography, Mössbauer spectroscopy, cyclic voltammetry, and SQUID magnetometry, and a theoretical description of the bonding within these diiron complexes has been obtained using computational methods. The effect of the metal-metal interaction on the electronic structure and bonding in diiron imido complexes 4-6 is discussed in the context of similar monometallic iron imido complexes.


Subject(s)
Amides/chemistry , Imides/chemistry , Iron Compounds/chemistry , Phosphines/chemistry , Crystallography, X-Ray , Models, Molecular , Oxidation-Reduction , Spectroscopy, Mossbauer
8.
Inorg Chem ; 51(15): 8225-40, 2012 Aug 06.
Article in English | MEDLINE | ID: mdl-22804462

ABSTRACT

A series of homobimetallic phosphinoamide-bridged diiron and dimanganese complexes in which the two metals maintain different coordination environments have been synthesized. Systematic variation of the steric and electronic properties of the phosphinoamide phosphorus and nitrogen substituents leads to structurally different complexes. Reaction of [(i)PrNKPPh(2)] (1) with MCl(2) (M = Mn, Fe) affords the phosphinoamide-bridged bimetallic complexes [Mn((i)PrNPPh(2))(3)Mn((i)PrNPPh(2))] (3) and [Fe((i)PrNPPh(2))(3)Fe((i)PrNPPh(2))] (4). Complexes 3 and 4 are iso-structural, with one metal center preferentially binding to the three amide ligands in a trigonal planar arrangement while the second metal center is ligated by three phosphine donors. A fourth phosphinoamide ligand caps the tetrahedral coordination sphere of the phosphine-ligated metal center. Mössbauer spectroscopy of complex 4 suggests that the metals in these complexes are best described as Fe(II) centers. In contrast, treatment of MnCl(2) or FeI(2) with [MesNKP(i)Pr(2)] (2) leads to the formation of the halide-bridged species [(THF)Mn(µ-Cl)(MesNP(i)Pr(2))(2)Mn(MesNP(i)Pr(2))] (5) and [(THF)Fe(µ-I)(MesNP(i)Pr(2))(2)FeI (7), respectively. Utilization of FeCl(2) in place of FeI(2), however, leads exclusively to the C(3)-symmetric complex [Fe(MesNP(i)Pr(2))(3)FeCl] (6), structurally similar to 4 but with a halide bound to the phosphine-ligated Fe center. The Mössbauer spectrum of 6 is also consistent with high spin Fe(II) centers. Thus, in the case of the [(i)PrNPPh(2)](-) and [MesNP(i)Pr(2)](-) ligands, zwitterionic complexes with the two metals in disparate coordination environments are preferentially formed. In the case of the more electron-rich ligand [(i)PrNP(i)Pr(2)](-), complexes with a 2:1 mixed donor ligand arrangement, in which one of the ligand arms has reversed orientation relative to the previous examples, are formed exclusively when [(i)PrNLiP(i)Pr(2)] (generated in situ) is treated with MCl(2) (M = Mn, Fe): (THF)(3)LiCl[Mn(N(i)PrP(i)Pr(2))(2)(P(i)Pr(2)N(i)Pr)MnCl] (8) and [Fe(N(i)PrP(i)Pr(2))(2)(P(i)Pr(2)N(i)Pr)FeCl] (9). Bimetallic complexes 3-9 have been structurally characterized using X-ray crystallography, revealing Fe-Fe interatomic distances indicative of metal-metal bonding in complexes 6 and 9 (and perhaps 4, to a lesser extent). All of the complexes appear to adopt high spin electron configurations, and magnetic measurements indicate significant antiferromagnetic interactions in Mn(2) complexes 5 and 8 and no discernible magnetic superexchange in Fe(2) complex 4. The redox behavior of complexes 3-9 has also been investigated using cyclic voltammetry, and theoretical investigations (DFT) were performed to gain insight into the metal-metal interactions in these unique asymmetric complexes.


Subject(s)
Amides/chemistry , Coordination Complexes/chemistry , Ferrous Compounds/chemistry , Manganese/chemistry , Phosphines/chemistry , Crystallography, X-Ray , Ligands , Magnetic Phenomena , Models, Molecular , Oxidation-Reduction , Spectrophotometry, Infrared , Spectroscopy, Mossbauer , Temperature
9.
Inorg Chem ; 51(3): 1866-73, 2012 Feb 06.
Article in English | MEDLINE | ID: mdl-22257083

ABSTRACT

The heterobimetallic complexes [Mn((i)PrNPPh(2))(3)Cu((i)PrNHPPh(2))] (1) and [Fe((i)PrNPPh(2))(3)Cu((i)PrNHPPh(2))] (2) have been synthesized by the one pot reaction of LiN(i)PrPPh(2), MCl(2) (M = Mn, Fe), and CuI in high yield. Addition of excess CuI into 2 or directly to the reaction mixture led to the formation of a heterotrimetallic [Fe((i)PrNPPh(2))(3)Cu(2)((i)PrNPPh(2))] (3) in good yield. Complexes 1-3 have been characterized by means of elemental analysis, paramagnetic (1)H NMR, UV-vis spectroscopy, cyclic voltammetry, and single crystal X-ray analysis. In all three complexes, Mn or Fe are in the +2 oxidation state and have a high spin electron configuration, as evidenced by solution Evans' method. In addition, the oxidation state of Fe in complex 3 is confirmed by zero-field (57)Fe Mössbauer spectroscopy. X-ray crystallography reveals that the three coordinate Mn/Fe centers in the zwitterionic complexes 1-3 adopt an unusual trigonal planar geometry.

10.
J Am Chem Soc ; 133(10): 3336-8, 2011 Mar 16.
Article in English | MEDLINE | ID: mdl-21332160

ABSTRACT

Utilizing a hexadentate ligand platform, a high-spin trinuclear iron complex of the type ((tbs)L)Fe(3)(thf) was synthesized and characterized ([(tbs)L](6-) = [1,3,5-C(6)H(9)(NPh-o-NSi(t)BuMe(2))(3)](6-)). The silyl-amide groups only permit ligation of one solvent molecule to the tri-iron core, resulting in an asymmetric core wherein each iron ion exhibits a distinct local coordination environment. The triiron complex ((tbs)L)Fe(3)(thf) rapidly consumes inorganic azide ([N(3)]NBu(4)) to afford an anionic, trinuclear nitride complex [((tbs)L)Fe(3)(µ(3)-N)]NBu(4). The nearly C(3)-symmetric complex exhibits a highly pyramidalized nitride ligand that resides 1.205(3) Å above the mean triiron plane with short Fe-N (1.871(3) Å) distances and Fe-Fe separation (2.480(1) Å). The nucleophilic nitride can be readily alkylated via reaction with methyl iodide to afford the neutral, trinuclear methylimide complex ((tbs)L)Fe(3)(µ(3)-NCH(3)). Alkylation of the nitride maintains the approximate C(3)-symmetry in the imide complex, where the imide ligand resides 1.265(9) Å above the mean triiron plane featuring lengthened Fe-N(imide) bond distances (1.892(3) Å) with nearly equal Fe-Fe separation (2.483(1) Å).


Subject(s)
Ferric Compounds/chemistry , Iron/chemistry , Oxidation-Reduction
11.
Appl Opt ; 48(10): D26-35, 2009 Apr 01.
Article in English | MEDLINE | ID: mdl-19340117

ABSTRACT

A noninvasive optical diagnostic system for detection of cancerous and precancerous lesions of the cervix was evaluated in vivo. The optical system included a fiber-optic probe designed to measure polarized and unpolarized light transport properties of a small volume of tissue. An algorithm for diagnosing tissue based on the optical measurements was developed that used four optical properties, three of which were related to light scattering properties and the fourth of which was related to hemoglobin concentration. A sensitivity of ~77% and specificities in the mid 60% range were obtained for separating high grade squamous intraepithelial lesions and cancer from other pathologies and normal tissue. The use of different cross-validation methods in algorithm development is analyzed, and the relative difficulties of diagnosing certain pathologies are assessed. Furthermore, the robustness of the optical system for use by different doctors and to changes in fiber-optic probe are also assessed, and potential improvements in the optical system are discussed.


Subject(s)
Carcinoma in Situ/diagnosis , Light , Optical Devices , Precancerous Conditions/diagnosis , Scattering, Radiation , Uterine Cervical Neoplasms/diagnosis , Algorithms , Female , Fiber Optic Technology , Humans , Optical Devices/standards , Sensitivity and Specificity
12.
J Low Genit Tract Dis ; 13(4): 216-223, 2009 Oct.
Article in English | MEDLINE | ID: mdl-20694193

ABSTRACT

OBJECTIVE: To examine the utility of in vivo elastic light scattering measurements to identify cervical intraepithelial neoplasias (CIN) 2/3 and cancers in women undergoing colposcopy and to determine the effects of patient characteristics such as menstrual status on the elastic light scattering spectroscopic measurements. MATERIALS AND METHODS: A fiber optic probe was used to measure light transport in the cervical epithelium of patients undergoing colposcopy. Spectroscopic results from 151 patients were compared with histopathology of the measured and biopsied sites. A method of classifying the measured sites into two clinically relevant categories was developed and tested using five-fold cross-validation. RESULTS: Statistically significant effects by age at diagnosis, menopausal status, timing of the menstrual cycle, and oral contraceptive use were identified, and adjustments based upon these measurements were incorporated in the classification algorithm. A sensitivity of 77±5% and a specificity of 62±2% were obtained for separating CIN 2/3 and cancer from other pathologies and normal tissue. CONCLUSIONS: The effects of both menstrual status and age should be taken into account in the algorithm for classifying tissue sites based on elastic light scattering spectroscopy. When this is done, elastic light scattering spectroscopy shows good potential for real-time diagnosis of cervical tissue at colposcopy. Guiding biopsy location is one potential near-term clinical application area, while facilitating "see and treat" protocols is a longer term goal. Improvements in accuracy are essential.

13.
Gynecol Oncol ; 105(2): 439-45, 2007 May.
Article in English | MEDLINE | ID: mdl-17303229

ABSTRACT

OBJECTIVE: To examine the utility of in vivo elastic light scattering measurements to diagnose high grade squamous interepithelial lesions (HSIL) of the cervix. METHODS: A newly developed fiber optic probe was used to measure light transport in the cervical epithelium of 36 patients undergoing standard colposcopy. Both unpolarized and polarized light transport were measured in the visible and near-infrared. Spectroscopic results of 29 patients were compared with histopathology of the measured sites using ROC curves, MANOVA and logistic regression. RESULTS: Three spectroscopic parameters are statistically different for HSIL compared with low-grade lesions and normal tissue. When these three spectroscopic parameters are combined, retrospective sensitivities and specificities for HSIL versus non-HSIL are 100% and 80%, respectively. CONCLUSIONS: Reflectance measurements of elastically scattered light show promise as a non-invasive, real-time method to discriminate HSIL from other abnormalities and normal tissue. These results compare favorably with those obtained by fluorescence alone and by fluorescence combined with light scattering.


Subject(s)
Fiber Optic Technology/methods , Precancerous Conditions/diagnosis , Uterine Cervical Dysplasia/diagnosis , Uterine Cervical Neoplasms/diagnosis , Diagnosis, Differential , Female , Fiber Optic Technology/instrumentation , Humans , Light , Optical Fibers , Precancerous Conditions/pathology , Retrospective Studies , Scattering, Radiation , Sensitivity and Specificity , Uterine Cervical Neoplasms/pathology , Uterine Cervical Dysplasia/pathology
14.
Opt Express ; 15(7): 4039-53, 2007 Apr 02.
Article in English | MEDLINE | ID: mdl-19532648

ABSTRACT

Differences in light scattering properties of a tumorigenic and a non-tumorigenic model for tissue were demonstrated using a variety of light scattering techniques, the majority of which are in vivo compatible. In addition to determining that light scattering differences exist, models for the microarchitectural changes responsible for the light scattering differences were developed.

15.
J Biomed Opt ; 11(6): 064024, 2006.
Article in English | MEDLINE | ID: mdl-17212547

ABSTRACT

We have conducted an extensive comparison of cellular biochemical composition obtained from infrared and Raman spectra of intact cells with measurements using standard extraction and chemical analysis (including NMR), and flow cytometric assay on fixed cells. Measurements were conducted on a rat fibroblast carcinogenesis model consisting of normal and tumorigenic cells assayed as exponentially growing and plateau-phase cultures. Estimates of protein, DNA, RNA, lipids, and glycogen amounts were obtained from a previous publication in which vibrational spectra were fit to a set of basis spectra representing protein, DNA, RNA, lipids, and glycogen. The Raman spectral estimates of absolute cellular composition were quite similar to the independent biochemical and flow cytometric assays. The infrared spectra gave similar results for protein, lipid, and glycogen but underestimated the DNA content while overestimating the RNA level. When ratios of biochemical concentrations in exponential and plateau-phase cultures were examined, the Raman spectroscopic results were the same, within errors, as the independent methods, in all cases. Several changes in relative biochemical composition due to tumorigenic and proliferative status previously reported using vibrational spectroscopy were confirmed by the independent methods. These results demonstrate that vibrational spectroscopy can provide reliable estimates of the biochemical composition of mammalian cells.


Subject(s)
Biochemistry/methods , Biological Factors/analysis , Cell Count/methods , Fibroblasts/chemistry , Flow Cytometry/methods , Spectrophotometry, Infrared/methods , Spectrum Analysis, Raman/methods , Animals , Cell Line , Rats , Reproducibility of Results , Sensitivity and Specificity
16.
J Biomed Opt ; 10(3): 031106, 2005.
Article in English | MEDLINE | ID: mdl-16229631

ABSTRACT

Both infrared and Raman spectroscopies have the potential to noninvasively estimate the biochemical composition of mammalian cells, although this cannot be unambiguously determined from analysis approaches such as peak assignment or multivariate classification methods. We have developed a fitting routine that determines biochemical composition using basis spectra for the major types of biochemicals found in mammalian cells (protein, DNA, RNA, lipid and glycogen), which is shown to be robust and reproducible. We measured both infrared and Raman spectra of viable suspensions of pairs of nontumorigenic and tumorigenic rat fibroblast cell lines. To model in vivo conditions, we compared nonproliferating, nontumorigenic cells to proliferating, tumorigenic cells. Reproducible differences in biochemical composition were found for both nontumorigenic/tumorigenic cell models, using both spectroscopic techniques. These included an increased fraction of protein and nucleic acids in the tumorigenic cells, with a corresponding decrease in lipid and glycogen fractions. Measurements of each cell type in both the proliferating and nonproliferating states showed that proliferative status was the major determinant of differences in vibrational spectra, rather than tumorigenicity per se. The smallness of the spectral changes associated with tumorgenicity may be due to the subtle nature of the oncogenic change in this system (a single mutant oncogene).


Subject(s)
Biomarkers, Tumor/metabolism , Diagnosis, Computer-Assisted/methods , Neoplasms/diagnosis , Neoplasms/metabolism , Spectroscopy, Fourier Transform Infrared/methods , Spectrum Analysis, Raman/methods , Animals , Biomarkers, Tumor/analysis , Cell Line, Tumor , Rats , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...