Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Econ Entomol ; 103(4): 1347-54, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20857746

ABSTRACT

Field surveys of pest insect pest populations in agroecosystems reveal low but significant levels of tolerance to synthetic and biological pesticides but fail to uncover resistance alleles in test crosses. To study the potential of inducible mechanisms to generate tolerance to synthetic pesticides, we performed baseline susceptibility studies in field and laboratory populations of diamondback moth, Plutella xylostella (L.), to commercial formulations of emamectin benzoate. Pesticide exposure in the field caused elevated levels of tolerance, which decreased in field-collected populations after maintaining insects with pesticide-free diet in the laboratory. Because no significant resistance alleles were identified in back-crossed individuals, the observed increase in tolerance was probably not based on preexisting recessive resistance mechanisms in the population. Instead, the genetic analysis after five and 12 generations is compatible with a transient up-regulation of an immune and metabolic status in tolerant insects that can be transmitted to offspring by a maternal effect. Although the epigenetic effects contributed to incremental increases in tolerance in the first five generations, other resistance mechanisms that are transmitted genetically predominate after 12 generations of increased exposure to the pesticide.


Subject(s)
Disaccharides/pharmacology , Insecticide Resistance , Insecticides/pharmacology , Ivermectin/analogs & derivatives , Moths/drug effects , Animals , Ivermectin/pharmacology
2.
Med Vet Entomol ; 9(1): 59-65, 1995 Jan.
Article in English | MEDLINE | ID: mdl-7696689

ABSTRACT

Synthetic pyrethroid (SP) resistance has developed in Australian field populations of the sheep body louse, Bovicola (Damalinia) ovis. Laboratory bioassays were used to measure the susceptibility of lice to cypermethrin and the other registered SPs. Results of these bioassays indicated resistance to cypermethrin, deltamethrin, cyhalothrin and alphacypermethrin. So far, high-level resistance has been diagnosed in only a few strains. The toxicological responses of these strains were clearly separated from those of the majority of louse strains tested. Furthermore, these strains had survived immersion in commercial SP dips. The level of resistance described in some strains was sufficient to cause pour-on products to fail despite the fact that the LC50s of these strains fell within the normal range of field responses.


Subject(s)
Insecticide Resistance , Phthiraptera , Pyrethrins , Sheep/parasitology , Animals , Australia , Cattle , Lethal Dose 50 , Nitriles
SELECTION OF CITATIONS
SEARCH DETAIL
...