Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Diagnostics (Basel) ; 10(12)2020 Dec 12.
Article in English | MEDLINE | ID: mdl-33322812

ABSTRACT

Low-cost imaging systems that utilize exogenous fluorescent dyes, such as acridine orange (AO), have recently been developed for use as point-of-care (POC) blood analyzers. AO-based fluorescence imaging exploits variations in emission wavelength within different cell types to enumerate and classify leukocyte subpopulations from whole blood specimens. This approach to leukocyte classification relies on accurate and reproducible colorimetric features, which have previously been demonstrated to be highly dependent on the cell staining protocols (such as specific AO concentration, timing, and pH). We have developed a light-sheet-based fluorescence imaging spectrometer, featuring a spectral resolution of 9 nm, with an automated spectral extraction algorithm as an investigative tool to study the spectral features from AO-stained leukocytes. Whole blood specimens were collected from human subjects, stained with AO using POC methods, and leukocyte spectra were acquired on a cell-by-cell basis. The post-processing method involves three steps: image segmentation to isolate individual cells in each spectral image; image quality control to exclude cells with low emission intensity, out-of-focus cells, and cellular debris; and the extraction of spectra for each cell. An increase in AO concentration was determined to contribute to the red-shift in AO-fluorescence, while varied pH values did not cause a change in fluorescence. In relation to the spectra of AO-stained leukocytes, there were corresponding red-shift trends associated with dye accumulation within acidic vesicles and at increasing incubation periods. The system presented here could guide future development of POC systems reliant on AO fluorescence and colorimetric features to identify leukocyte subpopulations in whole blood specimens.

2.
Diagnostics (Basel) ; 9(3)2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31540364

ABSTRACT

A urinary tract infection (UTI) can be diagnosed via urinalysis, consisting of a dipstick test and manual microscopic examination. Point-of-care (POC) image-based systems have been designed to automate the microscopic examination for low-volume laboratories or low-resource clinics. In this pilot study, acridine orange (AO) was evaluated as a fluorescence-based contrast agent to aid in detecting and enumerating urine sediment specific for diagnosing a UTI. Acridine orange staining of epithelial cells, leukocytes, and bacteria provided sufficient contrast to successfully implement image segmentation techniques, which enabled the extraction of classifiable morphologic features. Surface area bounded by each cell border was used to differentiate the sediment; epithelial cells were larger than 500µm2, bacteria were less than 30µm2, and leukocytes in between. This image-based semi-automated technique using AO resulted in similar cell counts to the clinical results, which demonstrates the feasibility of AO as an aid for POC urinalysis systems.

3.
Anal Chem ; 90(13): 7862-7870, 2018 07 03.
Article in English | MEDLINE | ID: mdl-29873231

ABSTRACT

We present the merging of two technologies to perform continuous high-resolution fluorescence imaging of cellular suspensions in a deep microfluidics chamber with no moving parts. An epitaxial light sheet confocal microscope (e-LSCM) was used to image suspensions enabled by fluid transport via redox-magnetohydrodynamics (R-MHD). The e-LSCM features a linear solid state sensor, oriented perpendicular to the direction of flow, that can bin the emission across different numbers of pixels, yielding electronically adjustable optical sectioning. This, in addition to intensity thresholding, defines the axial resolution, which was validated with an optical phantom of polystyrene microspheres suspended in agarose. The linear fluid speed within the microfluidics chamber was uniform (0.16-2.9%) across the 0.5-1.0 mm lateral field of view (dependent upon the chosen magnification) with continuous acquisition. Also, the camera's linear exposure periods were controlled to ensure an accurate image aspect ratio across this span. Poly(3,4-ethylenedioxythiophene) (PEDOT) was electrodeposited as an immobilized redox film on electrodes of a chip for R-MHD, and the fluid flow was calibrated to specific linear speeds as a function of applied current. Images of leukocytes stained with acridine orange, a fluorescent, amphipathic vital dye that intercalates DNA, were acquired in the R-MHD microfluidics chamber with the e-LSCM to demonstrate imaging of biological samples. The combination of these technologies provides a miniaturizable platform for large sample volumes and high-throughput, image-based analysis without the requirement of moving parts, enabling development of robust, point-of-care image cytometry.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/chemistry , Hydrodynamics , Image Cytometry/methods , Light , Magnetic Phenomena , Microscopy, Confocal/methods , Polymers/chemistry , Electrochemistry , Humans , Image Processing, Computer-Assisted , Leukocytes/cytology , Oxidation-Reduction
4.
J Biomed Opt ; 22(3): 35001, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28253379

ABSTRACT

There exists a broad range of techniques that can be used to classify and count white blood cells in a point-of-care (POC) three-part leukocyte differential test. Improvements in lenses, light sources, and cameras for image-based POC systems have renewed interest in acridine orange (AO) as a contrast agent, whereby subpopulations of leukocytes can be differentiated by colorimetric analysis of AO fluorescence emission. We evaluated the effect on test accuracy using different AO staining and postprocessing methods in the context of an image-based POC colorimetric cell classification scheme. Thirty blood specimens were measured for percent cell counts using our POC system and a conventional hematology analyzer for comparison. Controlling the AO concentration used during whole-blood staining, the incubation time with AO, and the colorimetric ratios among the three population of leukocytes yielded a percent deviation of 0.706%, ? 1.534 % , and ? 0.645 % for the lymphocytes, monocytes, and granulocytes, respectively. Overall, we demonstrated that a redshift in AO fluorescence was observed at elevated AO concentrations, which lead to reproducible inaccuracy of cell counts. This study demonstrates there is a need for a strict control of the AO staining and postprocessing methods to improve test accuracy in these POC systems.


Subject(s)
Acridine Orange/metabolism , Hematologic Tests/standards , Leukocytes/cytology , Point-of-Care Systems/standards , Reproducibility of Results , Staining and Labeling/standards
5.
Biomed Opt Express ; 6(12): 4934-50, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26713207

ABSTRACT

Early detection of structural or functional changes in dysplastic epithelia may be crucial for improving long-term patient care. Recent work has explored myriad non-invasive or minimally invasive "optical biopsy" techniques for diagnosing early dysplasia, such as high-resolution microendoscopy, a method to resolve sub-cellular features of apical epithelia, as well as broadband sub-diffuse reflectance spectroscopy, a method that evaluates bulk health of a small volume of tissue. We present a multimodal fiber-based microendoscopy technique that combines high-resolution microendoscopy, broadband (450-750 nm) sub-diffuse reflectance spectroscopy (sDRS) at two discrete source-detector separations (374 and 730 µm), and sub-diffuse reflectance intensity mapping (sDRIM) using a 635 nm laser. Spatial resolution, magnification, field-of-view, and sampling frequency were determined. Additionally, the ability of the sDRS modality to extract optical properties over a range of depths is reported. Following this, proof-of-concept experiments were performed on tissue-simulating phantoms made with poly(dimethysiloxane) as a substrate material with cultured MDA-MB-468 cells. Then, all modalities were demonstrated on a human melanocytic nevus from a healthy volunteer and on resected colonic tissue from a murine model. Qualitative in vivo image data is correlated with reduced scattering and absorption coefficients.

6.
Rev Sci Instrum ; 86(9): 093709, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26429450

ABSTRACT

Linear image sensors have been widely used in numerous research and industry applications to provide continuous imaging of moving objects. Here, we present a widefield fluorescence microscope with a linear image sensor used to image translating objects for image cytometry. First, a calibration curve was characterized for a custom microfluidic chamber over a span of volumetric pump rates. Image data were also acquired using 15 µm fluorescent polystyrene spheres on a slide with a motorized translation stage in order to match linear translation speed with line exposure periods to preserve the image aspect ratio. Aspect ratios were then calculated after imaging to ensure quality control of image data. Fluorescent beads were imaged in suspension flowing through the microfluidics chamber being pumped by a mechanical syringe pump at 16 µl min(-1) with a line exposure period of 150 µs. The line period was selected to acquire images of fluorescent beads with a 40 dB signal-to-background ratio. A motorized translation stage was then used to transport conventional glass slides of stained cellular biospecimens. Whole blood collected from healthy volunteers was stained with 0.02% (w/v) proflavine hemisulfate was imaged to highlight leukocyte morphology with a 1.56 mm × 1.28 mm field of view (1540 ms total acquisition time). Oral squamous cells were also collected from healthy volunteers and stained with 0.01% (w/v) proflavine hemisulfate to demonstrate quantifiable subcellular features and an average nuclear to cytoplasmic ratio of 0.03 (n = 75), with a resolution of 0.31 µm pixels(-1).


Subject(s)
Image Cytometry/instrumentation , Microscopy, Fluorescence/instrumentation , Calibration , Humans , Image Processing, Computer-Assisted , Lab-On-A-Chip Devices , Leukocytes/cytology , Linear Models , Mouth/cytology
7.
PLoS One ; 10(5): e0125598, 2015.
Article in English | MEDLINE | ID: mdl-25962131

ABSTRACT

Proflavine hemisulfate, an acridine-derived fluorescent dye, can be used as a rapid stain for cytologic examination of biological specimens. Proflavine fluorescently stains cell nuclei and cytoplasmic structures, owing to its small amphipathic structure and ability to intercalate DNA. In this manuscript, we demonstrated the use of proflavine as a rapid cytologic dye on a number of specimens, including normal exfoliated oral squamous cells, cultured human oral squamous carcinoma cells, and leukocytes derived from whole blood specimens using a custom-built, portable, LED-illuminated fluorescence microscope. No incubation time was needed after suspending cells in 0.01% (w/v) proflavine diluted in saline. Images of proflavine stained oral cells had clearly visible nuclei as well as granular cytoplasm, while stained leukocytes exhibited bright nuclei, and highlighted the multilobar nature of nuclei in neutrophils. We also demonstrated the utility of quantitative analysis of digital images of proflavine stained cells, which can be used to detect significant morphological differences between different cell types. Proflavine stained oral cells have well-defined nuclei and cell membranes which allowed for quantitative analysis of nuclear to cytoplasmic ratios, as well as image texture analysis to extract quantitative image features.


Subject(s)
Contrast Media , Fluorescent Dyes , Papanicolaou Test/methods , Point-of-Care Systems , Proflavine , Cell Line, Tumor , Humans , Microscopy, Fluorescence/instrumentation , Microscopy, Fluorescence/methods , Papanicolaou Test/instrumentation
8.
Proc SPIE Int Soc Opt Eng ; 9328: 93280B, 2015 Apr 09.
Article in English | MEDLINE | ID: mdl-25983371

ABSTRACT

Colorectal cancer is the second leading cause of cancer deaths in the United States, affecting more than 130,000 Americans every year1. Determining tumor margins prior to surgical resection is essential to providing optimal treatment and reducing recurrence rates. Colorectal cancer recurrence can occur in up to 20% of cases, commonly within three years after curative treatment. Typically, when colorectal cancers are resected, a margin of normal tissue on both sides of the tumor is required. The minimum margin required for colon cancer is 5 cm and for the lower rectum 2 cm. However, usually more normal tissue is taken on both sides of the tumor because the blood supply to the entire segment is removed with the surgery and therefore the entire segment must be removed. Anastomotic recurrences may result from inadequate margins. Pathologists look at the margins to ensure that there is no residual tumor and this is usually documented in the pathology report. We have developed a portable, point-of-care fiber bundle microendoscopy imaging system for detection of abnormalities in colonic epithelial microstructure. The system comprises a laptop, a modified fiber bundle image guide with a 1mm active area diameter and custom Lab VIEW interface, and is approved for imaging surgically resected colon tissue at the University of Arkansas for Medical Sciences. The microendoscopy probe provides high-resolution images of superficial epithelial histology in real-time to assist surgical guidance and to localize occult regions of dysplasia which may not be visible. Microendoscopy images of freshly resected human colonic epithelium were acquired using the microendoscopy device and subsequently mosaicked using custom post-processing software. Architectural changes in the glands were mapped to histopathology H&E slides taken from the precise location of the microendoscopy images. Qualitatively, glandular distortion and placement of image guide was used to map normal and dysplastic areas of the colonic tumor and surrounding region from microendoscopy images to H&E slides. Quantitative metrics for correlating images were also explored and were obtained by analyzing glandular diameter and spatial distribution as well as image texture.

9.
Proc SPIE Int Soc Opt Eng ; 9332: 93320R, 2015 Mar 09.
Article in English | MEDLINE | ID: mdl-25983372

ABSTRACT

Many cases of epithelial cancer originate in basal layers of tissue and are initially undetected by conventional microendoscopy techniques. We present a bench-top, fiber-bundle microendoscope capable of providing high resolution images of surface cell morphology. Additionally, the microendoscope has the capability to interrogate deeper into material by using diffuse reflectance and broadband diffuse reflectance spectroscopy. The purpose of this multimodal technique was to overcome the limitation of microendoscopy techniques that are limited to only visualizing morphology at the tissue or cellular level. Using a custom fiber optic probe, high resolution surface images were acquired using topical proflavine to fluorescently stain non-keratinized epithelia. A 635 nm laser coupled to a 200 µm multimode fiber delivers light to the sample and the diffuse reflectance signal was captured by a 1 mm image guide fiber. Finally, a tungsten-halogen lamp coupled to a 200 µm multimode fiber delivers broadband light to the sample to acquire spectra at source-detector separations of 374, 729, and 1051 µm. To test the instrumentation, a high resolution proflavine-induced fluorescent image of resected healthy mouse colon was acquired. Additionally, five monolayer poly(dimethylsiloxane)-based optical phantoms with varying absorption and scattering properties were created to acquire diffuse reflectance profiles and broadband spectra.

SELECTION OF CITATIONS
SEARCH DETAIL
...